DOI QR코드

DOI QR Code

Net energy and its establishment of prediction equations for wheat bran in growing pigs

  • Zhiqian, Lyu (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yifan, Chen (College of Animal Science and Technology, Hebei Agricultural University) ;
  • Fenglai, Wang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Ling, Liu (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Shuai, Zhang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Changhua, Lai (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
  • Received : 2021.12.31
  • Accepted : 2022.05.03
  • Published : 2023.01.01

Abstract

Objective: The objective of this experiment was to determine the net energy (NE) value of 6 wheat bran and 1 wheat shorts by indirect calorimetry and establish the NE prediction equations of wheat bran fed to growing barrows. Methods: Forty-eight growing barrows (28.5±2.4 kg body weight) were allotted in a completely randomized design to 8 dietary treatments that included a corn-soybean meal basal diet, 6 wheat bran diets and 1 wheat shorts diet. The inclusion level of wheat bran or wheat shorts in diets is 30%. Results: The addition of wheat bran reduced the apparent total tract digestibility (ATTD) of nutrients (p<0.05). The ATTD of gross energy, crude protein (CP) and dry matter (DM) in the wheat shorts were greater than that in the wheat bran. Addition of wheat bran or wheat shorts had no effect on total heat production and fasting heat production. The NE of wheat bran was negatively correlated with neutral detergent fiber (r = -0.84; p<0.05) and acid detergent fiber (r = -0.83; p<0.05), while it was positively correlated with CP (r = 0.92; p<0.01). The NE values of wheat bran ranged from 6.79 to 8.15 MJ/kg DM, and the NE value of wheat shorts was 12.47 MJ/kg DM. The ratio of NE to metabolizable energy for wheat bran fed to growing pigs was from 66.0% to 71.7%, whereas the value for wheat shorts was 83.7%. Conclusion: The NE values of wheat bran ranged from 6.79 to 8.15 MJ/kg DM, and the NE value of wheat shorts was 12.47 MJ/kg DM. The NE value of wheat bran can be well predicted based on energy content and proximate analysis.

Keywords

Acknowledgement

Thanks for the support from the National Key R&D Program of China (2019YFD1002605), National Natural Science Foundation of China (31630074; 31702121; U1604106), and the 111 Project (B16044). We are grateful for the support from China Postdoctoral Management Committee.

References

  1. Millet S, Meyns T, Aluwe M, Brabander DD, Ducatelle R. Effect of grinding intensity and crude fibre content of the feed on growth performance and gastric mucosa integrity of growing-finishing pigs. Livest Sci 2010;134:152-4. https://doi.org/10.1016/j.livsci.2010.06.123
  2. Kerr BJ, Gabler NK, Shurson GC. Formulating diets containing corn distillers dried grains with solubles on a net energy basis: effects on pig performance and on energy and nutrient digestibility. Appl Anim Sci 2015;31:497-503. https://doi.org/10.15232/pas.2015-01445
  3. Hassan EG, Awad Alkareem AM, Mustafa AMI. Effect of fermentation and particle size of wheat bran on the antinutritional factors and bread quality. Pak J Nutr 2008;7:521-6. https://doi.org/10.3923/pjn.2008.521.526
  4. Zhang ZH. Modeling of energy value and determination of amino acid digestibility of wheat bran for growing pigs [Master's Thesis]. Beijing, China: China Agricultural University; 2012.
  5. Noblet J, van Milgen J. Energy value of pig feeds: effect of pig body weight and energy evaluation system. J Anim Sci 2004;82(Suppl 13):229-38. https://doi.org/10.2527/2004.8213_supplE229x
  6. Noblet J, Le Goff G. Effect of dietary fibre on the energy value of feeds for pigs. Anim Feed Sci Technol 2001;90:35-52. https://doi.org/10.1016/S0377-8401(01)00195-X
  7. Liu D, Liu L, Li D, Wang F. Determination and prediction of the net energy content of seven feed ingredients fed to growing pigs based on chemical composition. Anim Prod Sci 2015;55:1152-63. https://doi.org/10.1071/AN14091
  8. Li Z, Lyu Z, Liu H, et al. Prediction of net energy values in expeller-pressed and solvent-extracted rapeseed meal for growing pigs. Anim Biosci 2021;34:109-18. https://doi.org/10.5713/ajas.19.0962
  9. Lyu Z, Li Y, Liu H, et al. Net energy content of rice bran, defatted rice bran, corn gluten feed, and corn germ meal fed to growing pigs using indirect calorimetry. J Anim Sci 2018; 96:1877-88. https://doi.org/10.1093/jas/sky098
  10. AOAC. Official methods of analysis, 19th ed. Arlington, VA, USA: AOAC; 2012.
  11. Thiex NJ, Anderson S, Gildemeister B. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randall/ Soxtec/submersion method): collaborative study. J AOAC Int 2003;86:888-98. https://doi.org/10.1093/jaoac/86.5.888
  12. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  13. Prosky L, Asp NG, Schweizer TF, DeVries JW, Furda I. Determination of insoluble and soluble dietary fiber in foods and food products: collaborative study. J AOAC Int 1992;75:360-7. https://doi.org/10.1093/jaoac/75.2.360
  14. Brouwer E. Report of sub-committee on constants and factors. Proceedings of the 3rd EAAP Symposium on Energy Metabolism; Troonn Publ 11, London, UK: Academic Press;1965. pp. 441-3.
  15. Adeola O. Digestion and balance techniques in pigs. In: Lewis J, Southern LL, editors. Swine nutrition. Washington, DC, USA: CRC Press; 2001. pp. 903-16.
  16. Noblet J, Fortune H, Shi XS, Dubois S. Prediction of net energy value of feeds for growing pigs. J Anim Sci 1994;72:344-54. https://doi.org/10.2527/1994.722344x
  17. Li Z, Li Y, Lyu Z, et al. Net energy of corn, soybean meal and rapeseed meal in growing pigs. J Anim Sci Biotechnol 2017;8:44. https://doi.org/10.1186/s40104-017-0169-1
  18. Rosenfelder P, Eklund M, Mosenthin R. Nutritive value of wheat and wheat by-products in pig nutrition: a review. Anim Feed Sci Technol 2013;185:107-25. https://doi.org/10.1016/j.anifeedsci.2013.07.011
  19. Huang Q, Shi CX, Su YB, et al. Prediction of the digestible and metabolizable energy content of wheat milling by-products for growing pigs from chemical composition. Anim Feed Sci Technol 2014;196:107-16. https://doi.org/10.1016/j.anifeedsci.2014.06.009
  20. NRC (National Research Council). Committee on Nutrient Requirements of Swine. Nutrient requirements of swine. 11th ed. Washington, DC, USA: National Academies Press; 2012.
  21. Stein HH, Lagos LV, Casas GA. Nutritional value of feed ingredients of plant origin fed to pigs. Anim Feed Sci Technol 2016;218:33-69. https://doi.org/10.1016/j.anifeedsci.2016.05.003
  22. Yang P, Ni JJ, Zhao JB, Zhang G, Huang CF. Regression equations of energy values of corn, soybean meal, and wheat bran developed by chemical composition for growing pigs. Animals 2020;10:1490. https://doi.org/10.3390/ani10091490
  23. Nortey TN, Patience JF, Sands JS, Trottier NL, Zijlstra RT. Effects of xylanase supplementation on the apparent digestibility and digestible content of energy, amino acids, phosphorus, and calcium in wheat and wheat by-products from dry milling fed to grower pigs. J Anim Sci 2008;86:3450-64. https://doi.org/10.2527/jas.2007-0472
  24. Huang Q, Piao XS, Ren P, Li DF. Prediction of digestible and metabolizable energy content and standardized ileal amino acid digestibility in wheat shorts and red dog for growing pigs. Asian-Australas J Anim Sci 2012;25:1748-58. https://doi.org/10.5713/ajas.2012.12298
  25. Lyu Z, Wang L, Wang J, et al. Oat bran and wheat bran impact net energy by shaping microbial communities and fermentation products in pigs fed diets with or without xylanase. J Anim Sci Biotechnol 2020;11:99. https://doi.org/10.1186/s40104-020-00505-7
  26. Liu D, Jaworski NW, ZhangG, Li Z, Li D, Wang F. Effect of experimental methodology on fasting heat production and the net energy content of corn and soybean meal fed to growing pigs. Arch Anim Nutr 2014;68:281-95. https://doi.org/10.1080/1745039X.2014.931016
  27. Ramonet Y, van Milgen J, Dourmad JY, Dubois S, Meunier-Salaun MC, Noblet J. The effect of dietary fibre on energy utilisation and partitioning of heat production over pregnancy in sows. Br J Nutr 2000;84:85-94. https://doi.org/10.1159/000012842
  28. Rijnen MMJA, Verstegen MWA, Heetkamp MJW, Schrama JW. Effects of two different dietary fermentable carbohydrates on activity and heat production in grouphoused growing pigs. J Anim Sci 2003;81:1210-9. https://doi.org/10.2527/2003.8151210x
  29. Rijnen MMJA, Verstegen MWA, Heetkamp MJW, Haaksma J, Schrama JW. Effects of dietary fermentable carbohydrates on behavior and heat production in group-housed sows. J Anim Sci 2003;81:182-90. https://doi.org/10.2527/2003.811182x
  30. van Milgen J, Noblet J. Partitioning of energy intake to heat, protein, and fat in growing pigs. J Anim Sci 2003;81:E86-93. https://doi.org/10.2527/2003.8114_suppl_2E86x
  31. Labussiere E, van Milgen J, de Lange CFM, Noblet J. Maintenance energy requirements of growing pigs and calves are influenced by feeding level. J Nutr 2011;141:1855-61. https://doi.org/10.3945/jn.111.141291
  32. Liu D, Jaworski NW, Zhang G, Li Z, Li D, Wang F. Effect of experimental methodology on fasting heat production and the net energy content of corn and soybean meal fed to growing pigs. Arch Anim Nutr 2014;68:281-95. https://doi.org/10.1080/1745039X.2014.931016
  33. Zhang GF, Liu DW, Wang FL, Li DF. Estimation of the net energy requirements for maintenance in growing and finishing pigs. J Anim Sci 2014;92:2987-95. https://doi.org/10.2527/jas.2013-7002
  34. Heo JM, Adewole D, Nyachoti CM. Determination of the net energy content of canola meal from Brassica napus yellow and Brassica juncea yellow fed to growing pigs using indirect calorimetry. Anim Sci J 2014;85:751-6. https://doi.org/10.1111/asj.12196
  35. Chen Y, Wu F, Li P, et al. Energy content and amino acid digestibility of flaxseed expellers fed to growing pigs. J Anim Sci 2016;94:5295-307. https://doi.org/10.2527/jas.2016-0578
  36. Shi M, Liu Z, Wang H, et al. Determination and prediction of the digestible and metabolizable energy contents of corn germ meal in growing pigs. Asian-Australas J Anim Sci 2019;32:405-12. https://doi.org/10.5713/ajas.17.0891
  37. Jaworski NW, Liu DW, Li DF, Stein HH. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure. J Anim Sci 2016;94:3012-21. https://doi.org/10.2527/jas2016-0352