DOI QR코드

DOI QR Code

Review of two immunosuppressants: tacrolimus and cyclosporine

  • HyunJong Lee (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Hoon Myoung (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Soung Min Kim (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2023.08.27
  • Accepted : 2023.11.30
  • Published : 2023.12.31

Abstract

Immunosuppressants are vital in organ transplantation including facial transplantation (FT) but are associated with persistent side effects. This review article was prepared to compare the two most used immunosuppressants, cyclosporine and tacrolimus, in terms of mechanism of action, efficacy, and safety and to assess recent trials to mitigate their side effects. PubMed and Google Scholar queries were conducted using combinations of the following search terms: "transplantation immunosuppressant," "cyclosporine," "tacrolimus," "calcineurin inhibitor (CNI)," "efficacy," "safety," "induction therapy," "maintenance therapy," and "conversion therapy." Both immunosuppressants inhibit calcineurin and effectively down-regulate cytokines. Tacrolimus may be more advantageous since it lowers the likelihood of acute rejection, has the ability to reverse allograft rejection following cyclosporine treatment, and has the potential to reinnervate nerves. Meanwhile, graft survival rates seem to be comparable for the CNIs. To avoid nephrotoxicity, various immunosuppressants other than CNIs have been studied. Despite averting nephrotoxicity, these medications show increases in acute rejection or other types of adverse effects compared to CNIs. FT has been a topic of interest for oral and maxillofacial surgeons, and the postoperative usage of immunosuppressants is crucial for the long-term prognosis of FT. As contemporary transplantation regimens incorporate novel medications along with CNIs, further research is required.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) supported by the Ministry of Science and ICT (2022R1F1A1069624) and by the Ministry of Education (2022R1I1A1A01070644).

References

  1. Kirk AD. Induction immunosuppression. Transplantation 2006;82:593-602. https://doi.org/10.1097/01.tp.0000234905.56926.7f 
  2. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 2009;4:481-508. https://doi. org/10.2215/cjn.04800908 
  3. Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology 2000;47:119-25. https://doi.org/10.1016/s0162-3109(00)00192-2 
  4. Walsh CT, Zydowsky LD, McKeon FD. Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell signal transduction. J Biol Chem 1992;267:13115-8.  https://doi.org/10.1016/S0021-9258(18)42176-X
  5. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, et al.; ELITE-Symphony Study. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007;357:2562-75. https://doi.org/10.1056/nejmoa067411 
  6. Ponticelli C, Scolari MP. Calcineurin inhibitors in renal transplantation still needed but in reduced doses: a review. Transplant Proc 2010;42:2205-8. https://doi.org/10.1016/j.transproceed.2010.05.036 
  7. Murthy MVR, Mohan EVS, Sadhukhan AK. Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 1999;34:269-80. https://doi.org/10.1016/S0032-9592(98)00095-8 
  8. Corbett KM, Ford L, Warren DB, Pouton CW, Chalmers DK. Cyclosporin structure and permeability: from A to Z and beyond. J Med Chem 2021;64:13131-51. https://doi.org/10.1021/acs.jmedchem.1c00580 
  9. Patel D, Wairkar S. Recent advances in cyclosporine drug delivery: challenges and opportunities. Drug Deliv Transl Res 2019;9:1067-81. https://doi.org/10.1007/s13346-019-00650-1 
  10. Singh AK, Narsipur SS. Cyclosporine: a commentary on brand versus generic formulation exchange. J Transplant 2011;2011:480642. https://doi.org/10.1155/2011/480642 
  11. Czogalla A. Oral cyclosporine A--the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett 2009;14:139-52. https://doi.org/10.2478/s11658-008-0041-6 
  12. Ritschel WA. Microemulsion technology in the reformulation of cyclosporine: the reason behind the pharmacokinetic properties of Neoral. Clin Transplant 1996;10:364-73. 
  13. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001;37:1590-8. https://doi.org/10.1016/s0959-8049(01)00171-x 
  14. Beauchesne PR, Chung NS, Wasan KM. Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm 2007;33:211-20. https://doi.org/10.1080/03639040601155665 
  15. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 1987;40:1249-55. https://doi.org/10.7164/antibiotics.40.1249 
  16. Zuo KJ, Saffari TM, Chan K, Shin AY, Borschel GH. Systemic and local FK506 (tacrolimus) and its application in peripheral nerve surgery. J Hand Surg Am 2020;45:759-65. https://doi.org/10.1016/j.jhsa.2020.03.018 
  17. Dheer D, Jyoti, Gupta PN, Shankar R. Tacrolimus: an updated review on delivering strategies for multifarious diseases. Eur J Pharm Sci 2018;114:217-27. https://doi.org/10.1016/j.ejps.2017.12.017 
  18. McCormack PL. Extended-release tacrolimus: a review of its use in de novo kidney transplantation. Drugs 2014;74:2053-64. https://doi.org/10.1007/s40265-014-0316-3 
  19. Patel P, Patel H, Panchal S, Mehta T. Formulation strategies for drug delivery of tacrolimus: an overview. Int J Pharm Investig 2012;2:169-75. https://doi.org/10.4103/2230-973x.106981 
  20. Nicolai S, Bunyavanich S. Hypersensitivity reaction to intravenous but not oral tacrolimus. Transplantation 2012;94:e61-3. https://doi.org/10.1097/tp.0b013e31826e5995 
  21. Kang SY, Sohn KH, Lee JO, Kim SH, Cho SH, Chang YS. Intravenous tacrolimus and cyclosporine induced anaphylaxis: what is next? Asia Pac Allergy 2015;5:181-6. https://doi.org/10.5415/apallergy.2015.5.3.181 
  22. Ali SM, Ahmad A, Sheikh S, Ahmad MU, Rane RC, Kale P, et al. Polyoxyl 60 hydrogenated castor oil free nanosomal formulation of immunosuppressant tacrolimus: pharmacokinetics, safety, and tolerability in rodents and humans. Int Immunopharmacol 2010;10:325-30. https://doi.org/10.1016/j.intimp.2009.12.003 
  23. Moreno Gonzales M, Myhre L, Taner T. Sublingual tacrolimus in liver transplantation: a valid option? Transplant Proc 2016;48:2102-6. https://doi.org/10.1016/j.transproceed.2016.03.043 
  24. Pennington CA, Park JM. Sublingual tacrolimus as an alternative to oral administration for solid organ transplant recipients. Am J Health Syst Pharm 2015;72:277-84. https://doi.org/10.2146/ajhp140322 
  25. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004;43:623-53. https://doi.org/10.2165/00003088-200443100-00001 
  26. Christians U, Jacobsen W, Benet LZ, Lampen A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet 2002;41:813-51. https://doi.org/10.2165/00003088-200241110-00003 
  27. Hebert MF. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev 1997;27:201-14. https://doi.org/10.1016/s0169-409x(97)00043-4 
  28. Schutte-Nutgen K, Tholking G, Suwelack B, Reuter S. Tacrolimus - pharmacokinetic considerations for clinicians. Curr Drug Metab 2018;19:342-50. https://doi.org/10.2174/1389200219666180101104159 
  29. Lindholm A. Therapeutic monitoring of cyclosporin--an update. Eur J Clin Pharmacol 1991;41:273-83. https://doi.org/10.1007/bf00314952 
  30. Moller A, Iwasaki K, Kawamura A, Teramura Y, Shiraga T, Hata T, et al. The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects. Drug Metab Dispos 1999;27:633-6. 
  31. Araya AA, Tasnif Y. Tacrolimus. In: Aboubakr S, Abu-Ghosh A, Adibi Sedeh P, Aeby TC, Aeddula NR, Agadi S, et al., eds. StatPearls. StatPearls Publishing; 2023. 
  32. Kung L, Halloran PF. Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. Transplantation 2000;70:327-35. https://doi.org/10.1097/00007890-200007270-00017 
  33. Novartis Pharmaceuticals. Sandimmune (cyclosporine). Novartis Pharmaceuticals; 2020. 
  34. Novartis Pharmaceuticals. Neoral (cyclosporine modified). Novartis Pharmaceuticals; 2023. 
  35. Busuttil RW, Klintmalm GB, Lake JR, Miller CM, Porayko M. General guidelines for the use of tacrolimus in adult liver transplant patients. Transplantation 1996;61:845-7. https://doi.org/10.1097/00007890-199603150-00032 
  36. Astellas Pharma. Prograf (tacrolimus). Astellas Pharma; 2022. 
  37. Astellas Pharma. Astagraf XL. Astellas Pharma; 2022. 
  38. McCormack PL, Keating GM. Tacrolimus: in heart transplant recipients. Drugs 2006;66:2269-79; discussion 2280-2. https://doi. org/10.2165/00003495-200666170-00010 
  39. Ivulich S, Dooley M, Kirkpatrick C, Snell G. Clinical challenges of tacrolimus for maintenance immunosuppression post-lung transplantation. Transplant Proc 2017;49:2153-60. https://doi.org/10.1016/j.transproceed.2017.07.013 
  40. Brunet M, van Gelder T, Asberg A, Haufroid V, Hesselink DA, Langman L, et al. Therapeutic drug monitoring of tacrolimuspersonalized therapy: second consensus report. Ther Drug Monit 2019;41:261-307. https://doi.org/10.1097/ftd.0000000000000640 
  41. Veloxis Pharmaceuticals. Envarsus XR. Veloxis Pharmaceuticals;2020. 
  42. Liu Y, Shepherd EG, Nelin LD. MAPK phosphatases--regulating the immune response. Nat Rev Immunol 2007;7:202-12. https://doi.org/10.1038/nri2035 
  43. Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics 2013;23:563-85. https://doi.org/10.1097/fpc.0b013e328364db84 
  44. Atsaves V, Leventaki V, Rassidakis GZ, Claret FX. AP-1 transcription factors as regulators of immune responses in cancer. Cancers (Basel) 2019;11:1037. https://doi.org/10.3390/cancers11071037 
  45. Kraaijeveld R, Li Y, Yan L, de Leur K, Dieterich M, Peeters AMA, et al. Inhibition of T helper cell differentiation by tacrolimus or sirolimus results in reduced B-cell activation: effects on T follicular helper cells. Transplant Proc 2019;51:3463-73. https://doi. org/10.1016/j.transproceed.2019.08.039 
  46. Henry ML. Cyclosporine and tacrolimus (FK506): a comparison of efficacy and safety profiles. Clin Transplant 1999;13:209-20. https://doi.org/10.1034/j.1399-0012.1999.130301.x 
  47. Kamel M, Kadian M, Srinivas T, Taber D, Posadas Salas MA. Tacrolimus confers lower acute rejection rates and better renal allograft survival compared to cyclosporine. World J Transplant 2016;6:697-702. https://doi.org/10.5500/wjt.v6.i4.697 
  48. Kramer BK, Montagnino G, Del Castillo D, Margreiter R, Sperschneider H, Olbricht CJ, et al.; European Tacrolimus vs Cyclosporin Microemulsion Renal Transplantation Study Group. Efficacy and safety of tacrolimus compared with cyclosporin A microemulsion in renal transplantation: 2 year follow-up results. Nephrol Dial Transplant 2005;20:968-73. https://doi.org/10.1093/ndt/gfh739 
  49. Rath T. Tacrolimus in transplant rejection. Expert Opin Pharmacother 2013;14:115-22. https://doi.org/10.1517/14656566.2013.7513 74 
  50. Felldin M, Backman L, Brattstrom C, Bentdal O, Nordal K, Claesson K, et al. Rescue therapy with tacrolimus (FK 506) in renal transplant recipients--a Scandinavian multicenter analysis. Transpl Int 1997;10:13-8. https://doi.org/10.1007/bf02044336 
  51. Jiang H, Wynn C, Pan F, Ebbs A, Erickson LM, Kobayashi M. Tacrolimus and cyclosporine differ in their capacity to overcome ongoing allograft rejection as a result of their differential abilities to inhibit interleukin-10 production. Transplantation 2002;73:1808-17. https://doi.org/10.1097/00007890-200206150-00019 
  52. Busauschina A, Schnuelle P, van der Woude FJ. Cyclosporine nephrotoxicity. Transplant Proc. 2004 Mar;36(2 Suppl):229S-233S. https://doi.org/10.1016/j.transproceed.2004.01.021 
  53. Bentata Y. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif Organs 2020;44:140-52. https://doi.org/10.1111/aor.13551 
  54. Mayer AD, Dmitrewski J, Squifflet JP, Besse T, Grabensee B, Klein B, et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. Transplantation 1997;64:436-43. https://doi. org/10.1097/00007890-199708150-00012 
  55. Anghel D, Tanasescu R, Campeanu A, Lupescu I, Podda G, Bajenaru O. Neurotoxicity of immunosuppressive therapies in organ transplantation. Maedica (Bucur) 2013;8:170-5. 
  56. Bechstein WO. Neurotoxicity of calcineurin inhibitors: impact and clinical management. Transpl Int 2000;13:313-26. https://doi. org/10.1007/s001470050708 
  57. Kalble T, Lucan M, Nicita G, Sells R, Burgos Revilla FJ, Wiesel M; European Association of Urology. EAU guidelines on renal transplantation. Eur Urol 2005;47:156-66. https://doi.org/10.1016/ j.eururo.2004.02.009 
  58. Konofaos P, Terzis JK. FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg 2013;29:141-8. https://doi. org/10.1055/s-0032-1333314 
  59. Kim YT, Hei WH, Kim S, Seo YK, Kim SM, Jahng JW, et al. Cotreatment effect of pulsed electromagnetic field (PEMF) with human dental pulp stromal cells and FK506 on the regeneration of crush injured rat sciatic nerve. Int J Neurosci 2015;125:774-83. https://doi.org/10.3109/00207454.2014.971121 
  60. Udina E, Ceballos D, Verdu E, Gold BG, Navarro X. Bimodal dose-dependence of FK506 on the rate of axonal regeneration in mouse peripheral nerve. Muscle Nerve 2002;26:348-55. https://doi. org/10.1002/mus.10195 
  61. Wang MS, Zeleny-Pooley M, Gold BG. Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J Pharmacol Exp Ther 1997;282:1084-93. 
  62. Lee M, Doolabh VB, Mackinnon SE, Jost S. FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle Nerve 2000;23:633-40. https://doi.org/10.1002/(sici)1097-4598(200004)23:4%3C633::aid-mus24%3E3.0.co;2-q
  63. Seixas SF, Forte GC, Magnus GA, Stanham V, Mattiello R, Silva JB. Effect of tacrolimus and cyclosporine immunosuppressants on peripheral nerve regeneration: systematic review and meta-analysis. Rev Bras Ortop (Sao Paulo) 2022;57:207-13. https://doi. org/10.1055/s-0041-1736467 
  64. Meirer R, Babuccu O, Unsal M, Nair DR, Gurunluoglu R, Skugor B, et al. Effect of chronic cyclosporine administration on peripheral nerve regeneration: a dose-response study. Ann Plast Surg 2002;49:96-103. https://doi.org/10.1097/00000637-200207000-00015 
  65. Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS. Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. J Pharmacol Exp Ther 1999;289:1202-10. 
  66. Devauchelle B, Badet L, Lengele B, Morelon E, Testelin S, Michallet M, et al. First human face allograft: early report. Lancet 2006;368:203-9. https://doi.org/10.1016/s0140-6736(06)68935-6 
  67. Lantieri L, Meningaud JP, Grimbert P, Bellivier F, Lefaucheur JP, Ortonne N, et al. Repair of the lower and middle parts of the face by composite tissue allotransplantation in a patient with massive plexiform neurofibroma: a 1-year follow-up study. Lancet 2008;372:639-45. https://doi.org/10.1016/s0140-6736(08)61277-5 
  68. Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology 2000;47:215-45. https:// doi.org/10.1016/s0162-3109(00)00190-9 
  69. Kriss M, Sotil EU, Abecassis M, Welti M, Levitsky J. Mycophenolate mofetil monotherapy in liver transplant recipients. Clin Transplant 2011;25:E639-46. https://doi.org/10.1111/j.1399-0012.2011.01512.x 
  70. Schmeding M, Neumann UP, Neuhaus R, Neuhaus P. Mycophenolate mofetil in liver transplantation--is monotherapy safe? Clin Transplant 2006;20 Suppl 17:75-9. https://doi.org/10.1111/j.1399-0012.2006.00604.x 
  71. Lassailly G, Dumortier J, Saint-Marcoux F, El Amrani M, Boulanger J, Boleslawski E, et al. Real life experience of mycophenolate mofetil monotherapy in liver transplant patients. Clin Res Hepatol Gastroenterol 2021;45:101451. https://doi.org/10.1016/j.clinre.2020.04.017 
  72. Webster AC, Lee VW, Chapman JR, Craig JC. Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients: a systematic review and metaanalysis of randomized trials. Transplantation 2006;81:1234-48. https://doi.org/10.1097/01.tp.0000219703.39149.85 
  73. Moes DJ, Guchelaar HJ, de Fijter JW. Sirolimus and everolimus in kidney transplantation. Drug Discov Today 2015;20:1243-9. https://doi.org/10.1016/j.drudis.2015.05.006 
  74. Jorgenson MR, Descourouez JL, Brady BL, Bowman L, Hammad S, Kaiser TE, et al. Alternatives to immediate release tacrolimus in solid organ transplant recipients: when the gold standard is in short supply. Clin Transplant 2020;34:e13903. https://doi.org/10.1111/ctr.13903 
  75. Klawitter J, Nashan B, Christians U. Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf 2015;14:1055-70. https://doi.org/10.1517/14740338.2015.1040388 
  76. Zeng J, Zhong Q, Feng X, Li L, Feng S, Fan Y, et al. Conversion from calcineurin inhibitors to mammalian target of rapamycin inhibitors in kidney transplant recipients: a systematic review and meta-analysis of randomized controlled trials. Front Immunol 2021;12:663602. https://doi.org/10.3389/fimmu.2021.663602 
  77. Parlakpinar H, Gunata M. Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs. Immunopharmacol Immunotoxicol 2021;43:651-65. https://doi.org/10.1080/08923973.2021.1966033 
  78. Kimzey AL, Piche MS, Wood M, Weir AB, Lansita J. Immunophenotyping in drug development. In: McQueen CA, ed. Comprehensive toxicology. 3rd ed. Vol. 11. Immune system toxicology. Elsevier Science; 2018:399-427. 
  79. Nair V, Liriano-Ward L, Kent R, Huprikar S, Rana M, Florman SS, et al. Early conversion to belatacept after renal transplantation. Clin Transplant 2017;31:e12951. https://doi.org/10.1111/ctr.12951 
  80. Bristol-Myers Squibb. Belatacept. Bristol-Myers Squibb; 2019. 
  81. El Hennawy H, Safar O, Al Faifi AS, El Nazer W, Kamal A, Mahedy A, et al. Belatacept rescue therapy of CNI-induced nephrotoxicity, meta-analysis. Transplant Rev (Orlando) 2021;35:100653. https://doi.org/10.1016/j.trre.2021.100653 
  82. Budde K, Prashar R, Haller H, Rial MC, Kamar N, Agarwal A, et al. Conversion from calcineurin inhibitor- to belatacept-based maintenance immunosuppression in renal transplant recipients: a randomized phase 3b trial. J Am Soc Nephrol 2021;32:3252-64. https://doi.org/10.1681/asn.2021050628 
  83. Mannon RB, Armstrong B, Stock PG, Mehta AK, Farris AB, Watson N, et al. Avoidance of CNI and steroids using belatacept-results of the clinical trials in organ transplantation 16 trial. Am J Transplant 2020;20:3599-608. https://doi.org/10.1111/ajt.16152 
  84. Grinyo JM, Del Carmen Rial M, Alberu J, Steinberg SM, Manfro RC, Nainan G, et al. Safety and efficacy outcomes 3 years after switching to belatacept from a calcineurin inhibitor in kidney transplant recipients: results from a phase 2 randomized trial. Am J Kidney Dis 2017;69:587-94. https://doi.org/10.1053/j.ajkd.2016.09.021 
  85. Jones JW Jr, Ustuner ET, Zdichavsky M, Edelstein J, Ren X, Maldonado C, et al. Long-term survival of an extremity composite tissue allograft with FK506-mycophenolate mofetil therapy. Surgery 1999;126:384-8.  https://doi.org/10.1016/S0039-6060(99)70181-9
  86. Pushpakumar SB, Barker JH, Soni CV, Joseph H, van Aalst VC, Banis JC, et al. Clinical considerations in face transplantation. Burns 2010;36:951-8. https://doi.org/10.1016/j.burns.2010.01.011 
  87. Diep GK, Berman ZP, Alfonso AR, Ramly EP, Boczar D, Trilles J, et al. The 2020 facial transplantation update: a 15-year compendium. Plast Reconstr Surg Glob Open 2021;9:e3586. https://doi.org/10.1097/gox.0000000000003586 
  88. Vyas K, Bakri K, Gibreel W, Cotofana S, Amer H, Mardini S. Facial transplantation. Facial Plast Surg Clin North Am 2022;30:255-69. https://doi.org/10.1016/j.fsc.2022.01.011 
  89. Leonard DA, Gordon CR, Sachs DH, Cetrulo CL Jr. Immunobiology of face transplantation. J Craniofac Surg 2012;23:268-71. https://doi.org/10.1097/scs.0b013e318241b8e0 
  90. Amini L, Wagner DL, Rossler U, Zarrinrad G, Wagner LF, Vollmer T, et al. CRISPR-Cas9-edited tacrolimus-resistant antiviral t cells for advanced adoptive immunotherapy in transplant recipients. Mol Ther 2021;29:32-46. https://doi.org/10.1016/j.ymthe.2020.09.011