DOI QR코드

DOI QR Code

Preparation of CuS Counter Electrodes Using Electroplating for Quantum Dot-sensitized Solar Cells

전기 도금 공정을 활용한 양자점 감응 태양전지 CuS 상대 전극 제작

  • SEUNG BEOM HA (Department of Chemical Engineering, Dankook University) ;
  • IN-HEE CHOI (Department of Chemical Engineering, Dankook University) ;
  • JAE-YUP KIM (Department of Chemical Engineering, Dankook University)
  • 하승범 (단국대학교 화학공학과) ;
  • 최인희 (단국대학교 화학공학과) ;
  • 김재엽 (단국대학교 화학공학과)
  • Received : 2023.12.12
  • Accepted : 2023.12.18
  • Published : 2023.12.30

Abstract

Copper sulfide (CuxS) has been extensively utilized as a counter electrode (CE) material for quantum dot solar cells (QDSCs) due to its exceptional catalytic activity for polysulfide electrolytes. The typical fabrication method of Cu2S CEs based on brass substrate is dangerous, involving the use of a highly concentrated hydrochloric acid solution in a relatively high temperature. In contrast, electroplating presents a safer alternative by employing a less acidic solution at a room temperature. In addition, the electroplating method increases the probability of obtaining CEs of consistent quality compared to the brass method. In this study, the optimized electroplating cycle for CuS CEs in QDSCs has been studied for the highly efficient photovoltaic performances. The QDSCs, featuring electroplated CuS CEs, achieved an impressive efficiency of 7.18%, surpassing the conventional method employing brass CEs, which yielded an efficiency of 6.62%.

Keywords

References

  1. P. Roussignol, D. Ricard, C. Flytzanis, and N. Neuroth, "Phonon broadening and spectral hole burning in very small semiconductor particles", Physical Review Letters, Vol. 62, No. 3, 1989, pp. 312, doi: https://doi.org/10.1103/PhysRevLett.62.312.
  2. M. Beaudoin, M. Meunier, and C. J. Arsenault, "Blueshift of the optical band gap: implications for the quantum confinement effect in a-Si:H/α-SiNx: H multilayers", Physical Review B, Vol. 47, No. 4, 1993, pp. 2197, doi: https://doi.org/10.1103/PhysRevB.47.2197.
  3. J. Tian and G. Cao, "Semiconductor quantum dot-sensitized solar cells", Nano Reviews, Vol. 4, No. 1, 2013, pp. 22578, doi: https://doi.org/10.3402/nano.v4i0.22578.
  4. P. V. Kamat, "Quantum dot solar cells. Semiconductor nanocrystals as light harvesters", The Journal of Physical Chemistry C, Vol. 112, No. 48, 2008, pp. 18737-18753, doi:https://doi.org/10.1021/jp806791s.
  5. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, "Emergence of colloidal quantum-dot light-emitting technologies", Nature Photonics, Vol. 7, 2013, pp. 13-23, doi: https://doi.org/10.1038/nphoton.2012.328.
  6. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection", Nature Photonics, Vol. 7, 2013, pp. 407-412, doi: https://doi.org/10.1038/nphoton.2013.70.
  7. K. H. Lee, C. Y. Han, H. D. Kang, H. Ko, C. Lee, J. Lee, N. S. Myoung, S. Y. Yim, and H. Yang, "Highly efficient, colorreproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer", ACS Nano, Vol. 9, No. 11, 2015, pp. 10941-10949, doi: https://doi.org/10.1021/acsnano.5b05513.
  8. G. J. Supran, Y. Shirasaki, K. W. Song, J. M. Caruge, P. T. Kazlas, S. Coe-Sullivan, T. L. Andrew, M. G. Bawendi, and V. Bulovic, "QLEDs for displays and solid-state lighting", MRS Bulletin, Vol. 38, 2013, pp. 703-711, doi: https://doi.org/10.1557/mrs.2013.181.
  9. Z. Liu, Y. Wang, B. Wang, Y. Li, Z. Liu, J. Han, K. Guo, Y. Li, T. Cui, L. Han, C. Liu, and G. Li, "PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties", International Journal of Hydrogen Energy, Vol. 38, No. 25, 2013, pp. 10226-10234, doi: https://doi.org/10.1016/j.ijhydene.2013.06.028.
  10. Y. Chen, X. Feng, M. Liu, J. Su, and S. Shen, "Towards efficient solar-to-hydrogen conversion: fundamentals and recent progress in copper-based chalcogenide photocathodes", Nanophotonics, Vol. 5, No. 4, 2016, pp. 524-547, doi: https://doi.org/10.1515/nanoph-2016-0027.
  11. P. Huang, S. Xu, M. Zhang, W. Zhong, Z. Xiao, and Y. Luo, "Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells", Optical Materials, Vol. 110, 2020, pp. 110535, doi: https://doi.org/10. 1016/j.optmat.2020.110535. https://doi.org/10.1016/j.optmat.2020.110535
  12. A. Rasad, "Enhancement performance of CdSe quantum dot based solar cells influence of graphene nanoparticles", American Journal of Physics and Applications, Vol. 10, No. 3, 2022, pp. 51-56, doi: https://doi.org/10.11648/j.ajpa.20221003.11.
  13. J. H. Bang and P. V. Kamat, "Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe", ACS Nano, Vol. 3, No. 6, 2009, pp. 1467-1476, doi:https://doi.org/10.1021/nn900324q.
  14. M. Xing, Y. Wei, R. Wang, and Z. Zhang, "Study on the performance of ZMO/PbS quantum dot heterojunction solar cells", Solar Energy, Vol. 213, 2021, pp. 53-58, doi: https://doi.org/10.1016/j.solener.2020.11.023.
  15. J. Y. Kim, J. Yang, J. H. Yu, W. Baek, C. H. Lee, H. J. Son, T. Hyeon, and M. J. Ko, "Highly efficient copper-indium-selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers", ACS Nano, Vol. 9, No. 11, 2015, pp. 11286-11295, doi: https://doi.org/10.1021/acsnano.5b04917.
  16. W. Li, Z. Pana, and X. Zhong, "CuInSe2 and CuInSe2-ZnS based high efficiency "green" quantum dot sensitized solar cells", Journal of Materials Chemistry A, Vol. 3, 2015, pp. 1649-1655, doi: https://doi.org/10.1039/C4TA05134C.
  17. A. Zaban, O. I. Micic, B. A. Gregg, and A. J. Nozik, "Photosensitization of nanoporous TiO2 electrodes with InP quantum dots", Langmuir, Vol. 14, No. 12, 1998, pp. 3153-3156, doi: https://doi.org/10.1021/la9713863.
  18. Y. L. Lee and C. H. Chang, "Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells", Journal of Power Sources, Vol. 185, No. 1, 2008, pp. 584-588, doi: https://doi.org/10.1016/j.jpowsour.2008.07.014.
  19. K. Meng, P. K. Surolia, O. Byrne, K. R. Thampi, "Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode", Journal of Power Sources, Vol. 248, 2014, pp. 218-223, doi: https://doi.org/10.1016/j.jpowsour.2013.09.004.
  20. B. V. Thang, H. T. Tung, D. H. Phuc, T. P. Nguyen, T. V. Man, and L. Q. Vinh, "High-efficiency quantum dot sensitized solar cells based on flexible rGO-Cu2S electrodes compared with PbS, CuS, Cu2S CEs", Solar Energy Materials and Solar Cells, Vol. 250, 2023, pp. 112042, doi: https://doi.org/10.1016/j.solmat.2022.112042.
  21. F. Wang, H. Dong, J. Pan, J. Li, Q. Li, and D. Xu, "One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells", The Journal of Physical Chemistry C, Vol. 118, No. 34, 2014, pp. 19589-19598, doi: https://doi.org/10.1021/jp505737u.
  22. P. N. Kumar, A. Kolay, S. K. Kumar, P. Patra, A. Aphale, A. K. Srivastava, and M. Deepa, "Counter electrode impact on quantum dot solar cell efficiencies", ACS Applied Materials & Interfaces, Vol. 8, No. 41, 2016, pp. 27688-27700, doi:https://doi.org/10.1021/acsami.6b08921.
  23. S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. B. Choi, "Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells", Advanced Functional Materials, Vol. 21, No. 19, 2011, pp. 3729-3736, doi: https://doi.org/10.1002/adfm.201101191.