DOI QR코드

DOI QR Code

Increased Chemical Durability by Annealing of SPEEK Membrane for Polymer Electrolyte Fuel Cells

고분자 전해질 연료전지용 SPEEK 막의 어닐링에 의한 화학적 내구성 향상

  • MI-HWA LEE (Depatment of Polymer Chemistry Chemical Engineering, Sunchon National University) ;
  • DONGGEUN YOO (Depatment of Chemical Engineering, Sunchon National University) ;
  • HYE-RI LEE (CNL Energy) ;
  • IL-CHAI NA (CNL Energy) ;
  • KWONPIL PARK (Depatment of Chemical Engineering, Sunchon National University)
  • 이미화 (국립순천대학교 고분자.화학.화학공학과) ;
  • 유동근 (국립순천대학교 화학공학과) ;
  • 이혜리 ((주)씨엔엘에너지) ;
  • 나일채 ((주)씨엔엘에너지) ;
  • 박권필 (국립순천대학교 화학공학과)
  • Received : 2023.11.21
  • Accepted : 2023.12.12
  • Published : 2023.12.30

Abstract

Hydrocarbon-based polymer membranes to replace perfluorinated polymer membranes are being continuously researched. However, hydrocarbon-based membranes have a problem in that they are less durable than fluorine-based membranes. In this study, we sought to compare the annealing effect to improve the durability of sulfonated poly(ether ether ketone) (SPEEK). After membranes formation, thermogravimetric analysis and tensile strength were measured to compare changes in membranes properties due to annealing. After manufacturing the membrane and electrode assembly (MEA), the initial performance and chemical durability was compared with unit cell operation. During the 24-hour annealing process, the strength increased due to the increase in-S-O-S-crosslinking, and the sulfonic acid group decreased, leading to a decrease in I-V performance. By annealing, the hydrogen permeability was reduced to less than 1/10 of that of the nafion membrane, and as a result, open circuit voltage (OCV) and durability was improved. The SPEEK membranes annealed for 24 hours showed higher durability than the nafion 211 membranes of the same thickness.

Keywords

Acknowledgement

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-002).

References

  1. S. H. Mirfarsi, A. Kumar, J. Jeong, M. Adamski, S. McDermid, B. Britton, and E. Kjeang, "High-temperature stability of hydrocarbon-based Pemion® proton exchange membranes: a thermo-mechanical stability study", International Journal of Hydrogen Energy, Vol. 50, Pt. B, 2024, pp. 1507-1522, doi: https://doi.org/10.1016/j.ijhydene.2023.07.236. 
  2. G. Goldenman, M. Fernandes, M. Holland, T. Tugran, A. Nordin, C. Schoumacher, and A. McNeill, "The cost of inaction: a socioeconomic analysis of environmental and health impacts linked to exposure to PFAS", Nordic Council of Ministers, 2019, doi: https://doi.org/10.6027/TN2019-516. 
  3. Joint Subcommittee on Environment, Innovation, and Public Health; Per- and Polyfluoroalkyl Substances Strategy Team, "Per- and polyfluoroalkyl substances (PFAS) report", National Science and Technology Council, 2023. Retrieved from https://www.whitehouse.gov/wp-content/uploads/2023/03/OSTP-March-2023-PFAS-Report.pdf. 
  4. H. Brunn, G. Arnold, W. Korner, G. Rippen, K. G. Steinhauser, and I. Valentin, "PFAS: forever chemicals-persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites", Environmental Sciences Europe, Vol. 35, 2023, pp. 20, doi: https://doi.org/10.1186/s12302-023-00721-8. 
  5. M. Xu, H. Xue, Q. Wang, and L. Jia, "Sulfonated poly(arylene ether)s based proton exchange membranes for fuel cells", International Journal of Hydrogen Energy, Vol. 46, No. 62, 20 21, pp. 31727-31753, doi: https://doi.org/10.1016/j.ijhydene.2021.07.038. 
  6. T. Higashihara, K. Matsumoto, and M. Ueda, "Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells", Polymer, Vol. 50, No. 23, 2009, pp. 5341-5357, doi: https://doi.org/10.1016/j.polymer.2009.09.001. 
  7. C. Zhang, S. Kang, X. Ma, G. Xiao, and D. Yan, "Synthesis and characterization of sulfonated poly(arylene ether phosphine oxide)s with fluorenyl groups by direct polymerization for proton exchange membranes", Journal of Membrane Science, Vol. 329, No. 1-2, 2009, pp. 99-105, doi: https://doi.org/10.1016/j.memsci.2008.12.021. 
  8. J. Zhang, D. Aili, S. Lu, Q. Li, and S. P. Jiang, "Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures", Research, 2020, doi: https://doi.org/10.34133/2020/9089405. 
  9. K. R. Mugtasimova, A. P. Melnikov, E. A. Galitskaya, I. A. Ryzhkin, D. A. Ivanov, and V. V. Sinitsyn, "Effect of annealing on proton conductivity of aquivion-like proton-exchange membrane", Key Engineering Materials, Vol. 869, 2020, pp. 367-374, doi: https://doi.org/10.4028/www.scientific.net/KEM.869.367. 
  10. S. Vengatesan, E. Cho, H. J. Kim, and T. H. Lim, "Effects of curing condition of solution cast Nafion® membranes on PEMFC performance", Korean Journal of Chemical Engineering, Vol. 26, No. 3, 2009, pp. 679-684, doi: https://doi.org/10.1007/s11814-009-0113-y. 
  11. J. Li, X. Yang, H. Tang, and M. Pan, "Durable and high performance Nafion membrane prepared through high-temperature annealing methodology", Journal of Membrane Science, Vol. 361, No. 1-2, 2010, pp. 38-42, doi: https://doi.org/10.1016/j.memsci.2010.06.016. 
  12. J. S. Park, M. S. Shin, S. S. Sekhon, Y. W. Choi, and T. H. Yang, "Effect of annealing of nafion recast membranes containing ionic liquids", Journal of the Korean Electrochemical Society, Vol. 14, No. 1, 2011, pp. 9-15, doi: https://doi.org/10.5229/JKES.2011.14.1.009. 
  13. R. B. Moore and C. R. Martin, "Procedure for preparing solution-cast perfluorosulfonate ionomer films and membranes", Analytical Chemistry, Vol. 58, No. 12, 1986, pp. 2569-2570, doi: https://doi.org/10.1021/ac00125a046. 
  14. R. B. Moore III and C. R. Martin, "Chemical and morphological properties of solution-cast perfluorosulfonate ionomers", Macromolecules, Vol. 21, No. 5, 1988, pp. 1334-133 9, doi: https://doi.org/10.1021/ma00183a025. 
  15. Y. Luan, Y. Zhang, H. Zhang, L. Li, H. Li, and Y. Liu, "Annealing effect of perfluorosulfonated ionomer membranes on proton conductivity and methanol permeability", Journal of Applied Polymer, Vol. 107, No. 1, 2008, pp. 396-402, doi: https://doi.org/10.1002/app.27070. 
  16. M. Lee, S. Oh, Y. Park, D. Yoo, and K. Park, "Effect of annealing temperature on the durability of PEMFC polymer membrane", Korean Chemical Engineering Research, Vol. 60, No. 1, 2022, pp. 7-11, doi: https://doi.org/10.9713/kcer.2022.60.1.7. 
  17. S. velan Venkatesan, C. Lim, S. Holdcroft, and E. Kjeang, "Progression in the morphology of fuel cell membranes upon conjoint chemical and mechanical degradation", Journal of The Electrochemical Society, Vol. 163, No. 7, 2016, pp. F637-F643, doi: https://doi.org/10.1149/2.0671607jes. 
  18. B. Wu, M. Zhao, W. Shi, W. Liu, J. Liu, D. Xing, Y. Yao, Z. Hou, P. Ming, J. Gu, and Z. Zou, "The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests", International Journal of Hydrogen Energy, Vol. 39, No. 26, 2014, pp. 14381-14390, doi: https://doi.org/10.1016/j.ijhydene.2014.02.142. 
  19. X. Z. Yuan, H. Li, S. Zhang, J. Martin, and H. Wang, "A review of polymer electrolyte membrane fuel cell durability test protocols", Journal of Power Sources, Vol. 196, No. 22, 2011, pp. 9107-9116, doi: https://doi.org/10.1016/j.jpowsour.2011.07.082. 
  20. F. D. Coms, H. Xu, T. McCallum, and C. Mittelsteadt, "Mechanism of perfluorosulfonic acid membrane chemical degradation under low RH conditions", ECS Transactions, Vol. 64, No. 3, 2014, pp. 389-402, doi: https://doi.org/10.1149/06403.0389ecst. 
  21. T. Kim, J. Lee, H. Lee, T. W. Lim, and K. Park, "Degradation of polymer electrolyte membrane under OCV/low humidity vonditions", Korean Chemical Engineering Research, Vol. 4 5, No. 4, 2007, pp. 345-350. Retrieved from https://koreascience.kr/article/JAKO200710103499700.page.  10103499700.page
  22. C. Zhao, X. Li, Z. Wang, Z. Dou, S. Zhong, and H. Na, "Synthesis of the block sulfonated poly(ether ether ketone)s (SPEEKs) materials for proton exchange membrane", Journal of Membrane Science, Vol. 280, No. 1-2, 2006, pp. 643-650, doi: https://doi.org/10.1016/j.memsci.2006.02.028. 
  23. H. R. Lee, S. H. Lee, B. C. Hwang, I. C. Na, J. H. Lee, S. J. Oh, and K. P. Park, "Characteristics of proton exchange membrane fuel cells(PEMFC) membrane and electrode assembly (MEA) using sulfonated poly(ether ether ketone) membrane", Korean Chemical Engineering Research, Vol. 54, No. 2, 2016, pp. 181-186, doi: https://doi.org/10.9713/kcer.2016.54.2.181. 
  24. J. Fu, J. Ni, J. Wang, T. Qu, F. Hu, H. Liu, Q. Zhang, Z. Xu, C. Gong, and S. Wen, "Highly proton conductive and mechanically robust SPEEK composite membranes incorporated with hierarchical metal-organic framework/carbon nanotubes compound", Journal of Materials Research and Technology, Vol. 22, 2023, pp. 2660-2672, doi: https://doi.org/10.1016/j.jmrt.2022.12.118. 
  25. P. Knauth, H. Hou, E. Bloch, E. Sgreccia, and M. L. Di Vona, "Thermogravimetric analysis of SPEEK membranes: thermal stability, degree of sulfonation and cross-linking reaction", Journal of Analytical and Applied Pyrolysis, Vol. 92, No. 2, 2011, pp. 361-365, doi: https://doi.org/10.1016/j.jaap.2011.07.012. 
  26. J. Song, S. Kim, B. Ahn, J. Ko, and K. Park, "Effect of electrode degradation on the membrane degradation in PEMFC", Korean Chemical Engineering Research, Vol. 51, No. 1, 2013, pp. 68-72, doi: https://doi.org/10.9713/kcer.2013.51.1.68. 
  27. J. Jeong, M. Song, H. Chung, I. Na, J. Lee, H. Lee, and K. Park, "Performance and durability of PEMFC MEAs fabricated by various methods", Korean Chemical Engineering Research, Vol. 52, No. 5, 2014, pp. 558-563, doi: https://doi.org/10.9713/kcer.2014.52.5.558. 
  28. United States Department of Energy (DOE), "Multi-Year Research, development, and demonstration plan", DOE, 2016. Retrieved from https://www.energy.gov/sites/default/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf. 
  29. New Energy and Industrial Technology Development Organization (NEDO), "Cell Evaluation and Analysis Protocol Guideline", NEDO, 2016. Retrieved from https://www.nedo.go.jp/english/index.html.