DOI QR코드

DOI QR Code

Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2

Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과

  • SOOSUN LEE (Industry-Academy Cooperation Foundation, Korea National University of Transportation) ;
  • SONG SEOK (Industry-Academy Cooperation Foundation, Korea National University of Transportation) ;
  • TAE-WHAN HONG (Department of Materials Science and Engineering, Korea National University of Transportation College of Engineering)
  • 이수선 (한국교통대학교 산학협력단) ;
  • 석송 (한국교통대학교 산학협력단) ;
  • 홍태환 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공)
  • Received : 2023.09.22
  • Accepted : 2023.11.17
  • Published : 2023.12.30

Abstract

This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

Keywords

Acknowledgement

본 연구는 교육부에서 지원하는 한국기초과학지원연구원보조금(2019R1A6C1010047)의연구지원및2023년 한국교통대학교 산학협력단의 지원을 받아 수행하였으며 이에 감사드립니다.

References

  1. C. Bohringer, "The Kyoto Protocol: a review and perspectives", Oxford Review of Economic Policy, Vol. 19, No. 3, 2003, pp. 451-466, doi: https://doi.org/10.1093/oxrep/19.3.451.
  2. S. N. Seo, "Beyond the Paris Agreement: climate change policy negotiations and future directions", Regional Science Policy & Practice, Vol. 9, No. 2, 2017, pp. 121-140, doi: https://doi.org/10.1111/rsp3.12090.
  3. E. L. Tompkins and H. Amundsen, "Perceptions of the effectiveness of the United Nations Framework Convention on Climate Change in advancing national action on climate change", Environmental Science & Policy, Vol. 11, No. 1, 2008, pp. 1-13, doi: https://doi.org/10.1016/j.envsci.2007.06.004.
  4. N. K. Arora and I. Mishra, "COP26: more challenges than achievements", Environmental Sustainability, Vol. 4, 2021, pp. 585-588, doi: https://doi.org/10.1007/s42398-021-00212-7.
  5. D. B. Muller, G. Liu, A. N. Lovik, R. Modaresi, S. Pauliuk, F. S. Steinhoff, and H. Brattebo, "Carbon emissions of infrastructure development", Environmental Science & Technology, Vol. 47, No. 20, 2013, pp. 11739-11746, doi: https://doi.org/10.1021/es402618m.
  6. C. Park, X. Tang, K. J. Kim, J. Gottschlich, and Q. Leland, "Metal hydride heat storage technology for directed energy weapon systems", In: ASME 2007 International Mechanical Engineering Congress and Exposition; 2007 Nov 11-15; Seattle, WA. Vol. 8, c2007. pp. 961-969, doi: https://doi.org/10.1115/IMECE2007-42831.
  7. E. Rivard, M. Trudeau, and K. Zaghib, "Hydrogen storage for mobility: a review", Materials, Vol. 12, No. 12, 2019, pp. 1973, doi: https://doi.org/10.3390/ma12121973.
  8. R. Janot, A. Rougier, L. Aymard, C. Lenain, R. Herrera-Urbina, G. A. Nazri, and J. M. Tarascon, "Enhancement of hydrogen storage in MgNi by Pd-coating", Journal of Alloys and Compounds, Vol. 356-357, 2003, pp. 438-441, doi: https://doi.org/10.1016/S0925-8388(03)00115-4.
  9. A. Gupta, G. V. Baron, P. Perreault, S. Lenaerts, R. G. Ciocarlan, P. Cool, P. G. M. Mileo, S. Rogge, V. Van Speybroeck, G. Watson, P. Van Der Voort, M. Houlleberghs, E. Breynaert, J. Martens, and J. F. M. Denayer, "Hydrogen clathrates: next generation hydrogen storage materials", Energy Storage Materials, Vol. 41, 2021, pp. 69-107, doi: https://doi.org/10.1016/j.ensm.2021.05.044.
  10. Q. Luo, J. Li, B. Li, B. Liu, H. Shao, and Q. Li, "Kinetics in Mg-based hydrogen storage materials: enhancement and mechanism", Journal of Magnesium and Alloys, Vol. 7, No. 1, 2019, pp. 58-71, doi: https://doi.org/10.1016/j.jma.2018.12.001.
  11. P. A. Ward, C. Corgnale, J. A. Teprovich Jr, T. Motyka, B. Hardy, B. Peters, and R. Zidan, "High performance metal hydride based thermal energy storage systems for concentrating solar power applications", Journal of Alloys and Compounds, Vol. 645, Suppl. 1, 2015, pp. S374-S378, doi: https://doi.org/10.1016/j.jallcom.2014.12.106.
  12. J. S. Yu, J. H. Han, H. W. Sin, and T. W. Hong, "Fabrication and evaluation hydrogenation absorbing on Mg2NiHx-10 wt% CaF2 composites", Journal of Hydrogen and New Energy, Vol. 31, No. 6, 2020, pp. 553-557, doi: https://doi.org/10.7316/KHNES.2020.31.6.553.
  13. N. A. Elessawy, M. H. Gouda, S. M. Ali, M. Salerno, and M. S. M. Eldin, "Effective elimination of contaminant antibiotics using high-surface-area magnetic-functionalized graphene nanocomposites developed from plastic waste", Materials, Vol. 13, No. 7, 2020, pp. 1517, doi: https://doi.org/10.3390/ma13071517.
  14. B. P. Tarasov, S. N. Klyamkin, V. N. Fokin, D. N. Borisov, D. V. Schur, and V. A. Yartys , "Metal hydride accumulators of hydrogen on the basis of alloys of magnesium and rare-earth metals with nickel", In: T. N. Veziroglu, S. Zaginaichenko, D. V. Schur, B. Baranowski, A. P. Shpak, and V. V. Skorokhod, eds. NATO science series II: mathematics, physics and chemistry. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials; 2003 Sep 14-20; Sudak, Ukraine. Vol. 172. Dordrecht: Springer; 2005. pp. 143-146, doi: https://doi.org/10.1007/1-4020-2669-2_13.
  15. B. Galey, A. Auroux, S. Sabo-Etienne, S. Dhaher, M. Grellier, and G. Postole, "Improved hydrogen storage properties of Mg/MgH2 thanks to the addition of nickel hydride complex precursors", International Journal of Hydrogen Energy, Vol. 44, No. 54, 2019, pp. 28848-28862, doi: https://doi.org/10.1016/j.ijhydene.2019.09.127.
  16. M. Jangir, A. Jain, S. Agarwal, T. Zhang, S. Kumar, S. Selvaraj, T. Ichikawa, and I. P. Jain, "The enhanced de/re-hydrogenation performance of MgH2 with TiH2 additive", International Journal of Energy Research, Vol. 42, No. 3, 2018, pp. 113 9-1147, doi: https://doi.org/10.1002/er.3911.
  17. G. Liang, J. Huot, S. Boily, A. Van Neste, and R. Schulz, "Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems", Journal of Alloys and Compounds, Vol. 292, No. 1-2, 1999, pp. 247-252, doi: https://doi.org/10.1016/S0925-8388(99)00442-9.
  18. T. W. Hong, "Hydrogenation properties of Mg-TiNi hydrogen storage composites materials", Materials Science Forum, Vol. 486-487, 2005, pp. 586-589, doi: https://doi.org/10.4028/www.scientific.net/MSF.486-487.586.
  19. J. R. Lee and Y. H. Kim, "Agglomeration of nickel oxide particle during hydrogen reduction at high temperature in a fluidized bed reactor", Chemical Engineering Research and Design, Vol. 168, 2021, pp. 193-201, doi: https://doi.org/10.1016/j.cherd.2021.02.005.
  20. S. K. Kim, "Proportional strength-ductility relationship of non-SF6 diecast AZ91D eco-Mg alloys", Magnesium Technology, 2011, pp. 131-136, doi: https://doi.org/10.1007/978-3-319-48223-1_25.
  21. K. Chawla, D. K. Yadav, A. Bajpai, S. Kumar, and C. Lal, "Hydrogenation properties and kinetic study of MgH2-x wt% AC nanocomposites prepared by ball milling", Environmental Science and Pollution Research, Vol. 28, 2021, pp. 3872-3879, doi: https://doi.org/10.1007/s11356-020-08964-1.
  22. W. Peng, Z. Lan, W. Wei, L. Xu, and J. Guo, "Investigation on preparation and hydrogen storage performance of Mg17Al12 alloy", International Journal of Hydrogen Energy, Vol. 41, No. 3, 2016, pp. 1759-1765, doi: https://doi.org/10.1016/j.ijhydene.2015.11.138.