DOI QR코드

DOI QR Code

Hydrogen Production from Pyrolysis Oil of Waste Plastic on 46-3Q Catalyst

46-3Q 촉매 상에서 폐플라스틱의 열분해 오일로부터 수소 제조

  • SEUNGCHEOL SHIN (Major in Environmental & Energy Engineering, Division of Construction Environment Energy, The University of Suwon) ;
  • HANEUL JUNG (Major in Environmental & Energy Engineering, Division of Construction Environment Energy, The University of Suwon) ;
  • DANBEE HAN (Major in Environmental & Energy Engineering, Division of Construction Environment Energy, The University of Suwon) ;
  • YOUNGSOON BAEK (Major in Environmental & Energy Engineering, Division of Construction Environment Energy, The University of Suwon)
  • 신승철 (수원대학교 건설환경에너지공학부 환경에너지공학 전공) ;
  • 정하늘 (수원대학교 건설환경에너지공학부 환경에너지공학 전공) ;
  • 한단비 (수원대학교 건설환경에너지공학부 환경에너지공학 전공) ;
  • 백영순 (수원대학교 건설환경에너지공학부 환경에너지공학 전공)
  • Received : 2023.12.04
  • Accepted : 2023.12.21
  • Published : 2023.12.30

Abstract

Pyrolysis oil (C5-C20) produced using plastic non-oxidative pyrolysis technology produces naphtha oil (C5-C10) through a separation process, and naphtha oil produces hydrogen through a reforming reaction to secure economic efficiency and social and environmental benefits. In this study, waste plastic pyrolysis oil was subjected to a steam reforming reaction on a commercialized catalyst of 46-3Q And it was found that the 46-3Q catalyst reformed the pyrolysis oil to produce hydrogen. Therefore, an experiment was performed to increase hydrogen yield and minimize the byproduct of ethylene. The reaction experiment was performed using actual waste plastic oil (C8-C11) with temperature, steam/carbon ratio (S/C) ratio, and space velocity as variables. We studied reaction conditions that can maximize hydrogen yield and minimize ethylene byproducts.

Keywords

Acknowledgement

본 연구는 산업통상자원부 산하 에너지기술평가원의 신재생에너지 핵심기술개발사업(1415174714)의 지원을 받아 수행되었습니다.

References

  1. J. Jo, D. Shin, and Y. Kim, "Pyrolysis of plastic waste: current status and policy tasks", Korea Environment Institute, 2022. Retrieved from https://www.kei.re.kr/elibList.es?mid=a10101000000&elibName=researchreport&class_id=&act=view&c_id=741916. 
  2. OECE, "Global plastic outlook", OECD, 2022. Retrieved from https://doi.org/10.1787/de747aef-en. 
  3. S. Y. Lee, "Last year, the concentration of carbon dioxide on the Korean Peninsula reached a record high", Dong-A Science, 2023. Retrieved from https://m.dongascience.com/news.php?idx=60481. 
  4. Ministry of Environment Greenhouse Gas Inventory & Research Center of Korea, "2021 national greenhouse gas provisional emissions", Data.go.kr, 2022. Retrived from https://www.data.go.kr/data/15049589/fileData.do. 
  5. Greenpeace, "Disposable plastic waste during COVID, largest increase ever", Greenpeace, 2023. Retrieved from https://www.greenpeace.org/korea/press/25876/%EB%B3%B4%EB%8F%84%EC%9E%90%EB%A3%8C-%EC%BD%94%EB%A1%9C%EB%82%98-%EA%B8%B0%EA%B0%84-%EC%9D%BC%ED%9A%8C%EC%9A%A9-%ED%94%8C%EB%9D%BC%EC%8A%A4%ED%8B%B1-%ED%8F%90%EA%B8%B0%EB%AC%BC-presslease-plastic-repo/. 
  6. K. Xiao, X. Li, J. Santoso, H. Wang, K. Zhang, J. Wu, and D. Zhang, "Synergistic effect of dielectric barrier discharge plasma and Mn catalyst on CO2 reforming of toluene", Fuel, Vol. 285, 2021, pp. 119057, doi: https://doi.org/10.1016/j.fuel.2020.119057. 
  7. I. Aminu, M. A. Nahil, and P. T. Williams, "Pyrolysis-plasma/catalytic reforming of post-consumer waste plastics for hydrogen production", Catalysis Today, Vol. 420, 2023, pp. 11 4084, doi: https://doi.org/10.1016/j.cattod.2023.114084. 
  8. J. R. Rostrupnielsen and J. H. B. Hansen, "CO2-reforming of methane over transition metals", Journal of Catalysis, Vol. 144, No. 1, 1993, pp. 38-49, doi: https://doi.org/10.1006/jcat.1993.1312. 
  9. S. Freni, S. Cavallaro, N. Mondello, L. Spadaro, and F. Frusteri, "Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts", Catalysis Communications, Vol. 4, No. 6, 2003, pp. 259-268, doi: https://doi.org/10.1016/S1566-7367(03)00051-7. 
  10. F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O. D. Blasi, G. Bonura, and S. Cavallaro, "Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell", Applied Catalysis A: General, Vol. 270, No. 1-2, 2004, pp. 1-7, doi: https://doi.org/10.1016/j.apcata.2004.03.052. 
  11. M. Garcia-Dieguez, I. S. Pieta, M. C. Herrera, M. A. Larrubia, and L. J. Alemany, "Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane", Journal of Catalysis, Vol. 270, No. 1, 2010, pp. 136-145, doi: https://doi.org/10.1016/j.jcat.2009.12.010. 
  12. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic, "A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueousphase reforming of oxygenated hydrocarbons over supported metal catalysts", Applied Catalysis B: Environmental, Vol. 56, No. 1-2, 2005, pp. 171-186, doi: https://doi.org/10.1016/j.apcatb.2004.04.027. 
  13. A. S. Al-Fatesh, Y. Arafat, H. Atia, A. A. Ibrahim, Q. L. M. Ha, M. Schneider, M. M-Pohl, and A. H. Fakeeha, "CO2-reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst: effect of support modifiers (Mg, La and Sc) on catalytic stability", Journal of CO2 Utilization, Vol. 21, 2017, pp. 395-404, doi: https://doi.org/10.1016/j.jcou.2017.08.001. 
  14. X. Feng, J. Feng, and W. Li, "Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO2 reforming of CH4", Chinese Journal of Catalysis, Vol. 39, No. 1, 2018, pp. 88-98, doi: https://doi.org/10.1016/S1872-2067(17)62928-0. 
  15. F. M. B. Kontchouo, Z. Gao, X. Xianglin, Y. Wang, Y. Sun, S. Zhang, and X. Hu, "Steam reforming of n-hexane and toluene: understanding impacts of structural difference of aliphatic and aromatic hydrocarbons on their coking behaviours", Journal of Environmental Chemical Engineering, Vol. 9, No. 6, 2021, pp. 106383, doi: https://doi.org/10.1016/j.jece.2021.106383. 
  16. M. Kong, Q. Yang, J. Fei, and X. Zheng, "Experimental study of Ni/MgO catalyst in carbon dioxide reforming of toluene, a model compound of tar from biomass gasification", International Journal of Hydrogen Energy, Vol. 37, No. 18, 2012, pp. 13355-13364, doi: https://doi.org/10.1016/j.ijhydene.2012.06.108. 
  17. D. Swierczynski, S. Libs, C. Courson, and A. Kiennemann, "Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound", Applied Catalysis B: Environmental, Vol. 74, No. 3-4, 2007, pp. 211-222, doi: https://doi.org/10.1016/j.apcatb.2007.01.017. 
  18. N. Gao, S. Liu, Y. Han, C. Xing, and A. Li, "Steam reforming of biomass tar for hydrogen production over NiO/ceramic foam catalyst", International Journal of Hydrogen Energy, Vol. 40, No. 25, 2015, pp. 7983-7990, doi: https://doi.org/10.1016/j.ijhydene.2015.04.050. 
  19. N. Gao, X. Wang, A. Li, C. Wu, and Z. Yin, "Hydrogen production from catalytic steam reforming of benzene as tar model compound of biomass gasification", Fuel Processing Technology, Vol. 148, 2016, pp. 380-387, doi: https://doi.org/10.1016/j.fuproc.2016.03.019.