DOI QR코드

DOI QR Code

Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames

철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법

  • Se-Woon Choi (Department of Architectural Engineering, Daegu Catholic University)
  • 최세운 (대구가톨릭대학교 건축공학과 )
  • Received : 2023.10.26
  • Accepted : 2023.11.20
  • Published : 2023.12.31

Abstract

This study presents an optimal seismic design method based on genetic algorithms to induce beam-hinge collapse mechanisms in reinforced concrete moment frames. Two objective functions are used. The first minimizes the cost of the structure and the second maximizes the energy dissipation capacity of the structure. Constraints include strength conditions of columns and beams, minimum conditions for column-to-beam flexural strength ratio, and conditions for preventing plastic hinge occurrence of columns. Linear static analysis is performed to evaluate the strength of members, whereas nonlinear static analysis is carried out to evaluate energy dissipation capacity and occurrence of plastic hinges. The proposed method was applied to a four-story example structure, and it was confirmed that solutions for inducing a beam-hinge collapse mechanism are obtained. The value of the column-beam flexural strength ratio of the obtained design was found to be larger than the value suggested by existing seismic codes. A more robust strategy is needed to induce a beam-hinge collapse mode.

본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.

Keywords

Acknowledgement

이 결과물은 2021년도 대구가톨릭대학교 학술연구비 지원에 의한 것임

References

  1. ACI Committee 318 (2019) Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19), American Concrete Institute.
  2. Choi, S.W., Yang, H.J., Park, H.S. (2010) Development of Optimal Seismic Design Model for Inverted V-type Special Concentrically Braced Frames, J. Comput. Struct. Eng. Inst. Korea, 23, pp. 111~120.
  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002) A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evolut. Comput., 6, pp.182~197. https://doi.org/10.1109/4235.996017
  4. Dooley, L., Bracci, J.M. (2001) Seismic Evaluation of Column-to-Beam Strength Ratios in Reinforced Concrete Frames, ACI Struct. J., 98, pp.834~851.
  5. FEMA 356 (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agent.
  6. Hajirasouliha, I., Asadi, P., Pilakoutas, K. (2012) An Efficient Performance-Based Seismic Design Method for Reinforced Concrete Frames, Earthq. Eng. & Struct. Dyn., 41, pp.663~679. https://doi.org/10.1002/eqe.1150
  7. Hamburger, R.O., Kraw inkler, H., Malley, J.O., Adan, S.M. (2009) Seismic Design of Steel Special Moment Frames: A Guide for Practicing Engineers, Nat. Inst. Stand. & Technol., p.36.
  8. Kuntz, G.L., Brouning, J. (2003) Reduction of Column Yielding during Earthquakes for Reinforced Concrete Frames, ACI Struct. J., 100, pp.573~580.
  9. Lee, H. (1996) Revised Rule for Concepts of Strong-Column Weak-Girder Design, J. Struct. Eng., 122, pp.359~364. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(359)
  10. Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. (2006) OpenSees Command Language Manual, Pacific Earthquake Engineering Research (PEER) Center, 264(1), pp.137~158.
  11. Medina, R.A., Krawinkler, H. (2005) Strength Demand Issues Relevant for the Seismic Design of Moment-Resisting Frames, Earthq. Spectra, 21, pp.415~439. https://doi.org/10.1193/1.1896958
  12. Moehle, J.P., John, D.H., Christopher, D.L. (2008) Seismic Design of Reinforced Concrete Special Moment Frames: A Guide for Practicing Engineers, US Department of Commerce, Nat. Inst. Stand. & Technol., p.27.
  13. Nakashima, M., Sawaizumi, S. (2000) Column-to-Beam Strength Ratio Requied for Ensuring Beam-Collapse Mechanisms in Earthquake Responses of Steel Moment Frames, Proc. 12th World Conf. Earthq. Eng..
  14. Park, H.S., Choi, S.W. (2016) Genetic Algorithm Based Optimal Seismic Design Method for Inducing the Beam-Hinge Mechanism of Steel Moment Frames, J. Comput. Struct. Eng. Inst. Korea, 29(3), pp.253~260. https://doi.org/10.7734/COSEIK.2016.29.3.253
  15. Park, R., Paulay, T. (1975) Reinforced Concrete Structure, John Wiley and Sons.