DOI QR코드

DOI QR Code

Scour Impact on the Horizontal Bearing Capacity of Pier-Type Dolphin Structures

잔교식 돌핀 구조물의 수평 지지력에 세굴이 미치는 영향 검토

  • Received : 2023.11.17
  • Accepted : 2023.12.23
  • Published : 2023.12.31

Abstract

A study using numerical analysis techniques was conducted to examine the scour effect of pier-type dolphin structures installed in the domestic marine environment, and the effect of scour on horizontal bearing capacity was examined. In this study, we designed the berthing structures, taking into account the environmental and ground conditions of the target maritime area, and after calculating the predicted scour area, stability evaluation was performed by removing the ground elements of the area. The increase in scour depth was found to induce a direct decrease in horizontal bearing capacity due to soil loss in contact with the foundation, establishing a relationship that increases horizontal displacement. However, in the foundation designed to withstand the design load by reflecting the safety rate, the increase in horizontal displacement formed by possible scour is not large, which did not have a dominant effect on the horizontal bearing capacity of the foundation. In the future, research is required to analyze the impact of each factor and formalize evaluation and design techniques to evaluate the scour safety of marine foundations and pier-type structures installed in various ground conditions and structural formats.

국내 해양 환경에서 설치되는 잔교식 돌핀 구조물의 세굴 영향 검토를 위해 수치 해석적 기법을 활용한 연구를 수행하여, 세굴이 수평지지력에 미치는 영향을 검토하였다. 본 연구에서는 대상 해역의 환경 및 지반 조건을 고려하여 접안 구조물을 설계하였으며, 예측되는 세굴 영역을 산정한 후 해당 영역의 지반 요소를 제거하여 안정성 평가를 수행하였다. 세굴 깊이의 증가는 기초와 맞닿은 지반의 유실로 인해 직접적인 수평 지지력의 감소를 유발시키고, 이는 수평 변위를 증가시키는 관계를 확인하였다. 하지만 연구 대상 구조물과 같이 안전율이 반영되어 설계하중을 버틸 수 있도록 설계된 기초에서는 발생 가능한 세굴에 의해 형성된 수평 변위의 증가량이 크지 않아 기초의 수평지지 성능에 지배적인 영향을 미치지 못하는 것으로 나타났다. 추후 다양한 지반 조건, 구조 형식으로 설치된 해상 기초 및 잔교식 구조물의 세굴 안전성 평가를 위하여, 각 인자의 영향을 분석하고 평가 및 설계 기법의 정형화를 위한 연구가 요구된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 플랜트연구사업의 지원을 받아 연구되었습니다(RS-2018-KE000024).

References

  1. Breusers, H.N.C., Nicollet, G. and Shen, H.W. (1977). Local scour around cylindrical piers. Journal of Hydraulic Research, 15, 211-252. https://doi.org/10.1080/00221687709499645
  2. British Standard Institution (2019). Code of Practice for the Design of Quay Walls, Jetties and Dolphins, BS 6349-2, London, United Kingdom.
  3. Chiew, Y.M. and Melville, B.W. (1987). Local scour around bridge piers. Journal of Hydraulic Research, 25(1), 15-26. https://doi.org/10.1080/00221688709499285
  4. DNV (2014). Design of offshore wind turbine structures. DNV-OS-J101, Det Norske Veritas, Norway.
  5. Hoffmans, G.J.C.M. and Verheij, H.J. (1997). Scour manual, Balkema, Rotterdam, The Netherlands.
  6. Kim, Y.J., Lee, D.Y. and Kim, D.H. (2020). Risk assessment of offshore wind turbine support structures considering scouring. Journal of Korean Society of Coastal and Ocean Engineers. 32(6), 524-530 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.6.524
  7. Melville, B.W. and Coleman, S.E. (2000). Bridge Scour. Water Resources Publications, LLC, Colorado.
  8. Ministry of Oceans and Fishery. (2016). Design standards for harbour and fishery port. KDS 64 00 00 (in Korean).
  9. Ministry of Oceans and Fisheries (2019). National deep-sea design wave calculation report (in Korean).
  10. Oh, H.S. and Lee, H.J. (2022). Characteristics of local scour around the double pile in waves. Journal of Korean Society of Coastal and Ocean Engineers, 34(5), 169-175 (in Korean). https://doi.org/10.9765/KSCOE.2022.34.5.169
  11. Periku, E. and Yardim, Y. (2012). Effect of Scour on Load Carry Capacity of Piles on Mat Bridge. International Students'Conference of Civil Engineering, ISCCE 2012, Epoka University, Tirana, Albania, 10-11.
  12. Qi, W.G., Gao, F.P., Randolph, M.F. and Lehane, B.M. (2016). Scour effects on p-y curves for shallowly embedded piles in sand. Geotechnique, 66(8), 648-660. https://doi.org/10.1680/jgeot.15.P.157
  13. Richardson, E.V. and Davis, S.R. (1995). Evaluating scour at bridges. Rep. No. FHWA-IP-90-017 (HEC 18), Federal Highway Administration, Washington, D.C.
  14. Shen, H.W., Ogawa, Y. and Karaki, S.S. (1965). Time variation of bed deformation near bridge piers. Proceedings of the 11th IAHR Congress, Leningrad, USSR, 3, 1-9.
  15. Song, S.J., Jeon, W.Y. and Park, S.H. (2019). Flow and scour analysis around monopole of fixed offshore platform using method that couples computational fluid dynamics and discrete element method. Journal of Ocean Engineering and Technology, 33(3), 245-251 (in Korean). https://doi.org/10.26748/KSOE.2019.034
  16. Sumer, B.M., Fredsoe, J. and Christiansen, N. (1992). Scour around vertical pile in waves. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 118(1), 15-31. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(15)
  17. Sumer, B.M. and Fredsoe, J. (2002). The mechanics of scour in the marine environment. World Scientific, London.
  18. Wang, X. (2021). Research on vertical bearing capacity of pile foundation under wave scouring. Open Journal of Modelling and Simulation, Scientific Research Publishing, 9(2), 124-134. https://doi.org/10.4236/ojmsi.2021.92008
  19. Whitehouse, R. (1998). Scour at marine structures. Thomas Telford Ltd. London, UK.