DOI QR코드

DOI QR Code

Genetic determinants of periosteum-mediated craniofacial bone regeneration: a systematic review

  • Eyituoyo Okoturo (Division of Head & Neck Cancer Oral, Department of Maxillofacial Surgery, Lagos State University Teaching Hospital (LASUTH))
  • 투고 : 2023.07.21
  • 심사 : 2023.08.01
  • 발행 : 2023.12.20

초록

Background: Periosteum-mediated bone regeneration (PMBR) is a recognized method for mandibular reconstruction. Despite its unpredictable nature and the limited degree to which it is understood, it does not share the concerns of developmental changes to donor and recipient tissues that other treatment options do. The definitive role of the periosteum in bone regeneration in any mammal remains largely unexplored. The purpose of this study was to identify the genetic determinants of PMBR in mammals through a systematic review. Methods: Our search methodology was designed in accordance with the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. We conducted a quality assessment of each publication, and evaluated the differences in gene expression between days 7 and 15. Results: A total of four studies satisfied the inclusion criteria. The subjects and tissues examined in these studies were Wistar rat calvaria in two studies, mini-pigs in one study, and calves and mice in one study. Three out of the four studies achieved the necessary quality score of ≥ 3. Gene expression analysis showed increased activity of genes responsible for angiogenesis, cytokine activities, and immune-inflammatory responses on day 7. Additionally, genes related to skeletal development and signaling pathways were upregulated on day 15. Conclusions: The results suggest that skeletal morphogenesis is regulated by genes associated with skeletal development, and the gene expression patterns of PMBR may be characterized by specific pathways.

키워드

참고문헌

  1. Smith A, Petersen D, Samant S, Ver Halen JP. Pediatric mandibular reconstruction following resection of oral squamous cell carcinoma: a case report. Am J Otolaryngol 2014;35:826-8. https://doi.org/10.1016/j.amjoto.2014.07.004
  2. Castellon L, Jerez D, Mayorga J, Gallego A, Fuenzalida C, Laissle G. Mandibular reconstruction for pediatric patients. J Craniofac Surg 2018;29:1421-5. https://doi.org/10.1097/SCS.0000000000004746
  3. Posnick JC, Wells MD, Zuker RM. Use of the free fibular flap in the immediate reconstruction of pediatric mandibular tumors: report of cases. J Oral Maxillofac Surg 1993;51:189-96. https://doi.org/10.1016/S0278-2391(10)80021-7
  4. Hildago DA, Shenaq SM, Larson DL. Mandibular reconstruction in the pediatric patient. Head Neck 1996;18:359-65. https://doi.org/10.1002/1097-0347(199607/08)18:4<359::AID-HED2880180402>3.0.CO;2-I
  5. Lydaki E, Bolonaki I, Stiakaki E, Kambourakis A, Cordeiro PB, Meyers PA, et al. Immediate free flap mandibular reconstruction in osteosarcoma of the mandible in childhood. Pediatr Hematol Oncol 2000;17:335-40. https://doi.org/10.1080/088800100276334
  6. Eckardt A, Swennen G, Teltzrow T. Melanotic neuroectodermal tumor of infancy involving the mandible: 7-year follow-up after hemimandibulectomy and costochondral graft reconstruction. J Craniofac Surg 2001;12:349-54. https://doi.org/10.1097/00001665-200107000-00007
  7. Nahabedian MY, Tufaro A, Manson PN. Improved mandible function after hemimandibulectomy, condylar head preservation, and vascularized fibular reconstruction. Ann Plast Surg 2001;46:506-10. https://doi.org/10.1097/00000637-200105000-00009
  8. Phillips JH, Rechner B, Tompson BD. Mandibular growth following reconstruction using a free fibula graft in the pediatric facial skeleton. Plast Reconstr Surg 2005;116:419-24. https://doi.org/10.1097/01.prs.0000172677.71629.10
  9. Fenton CC, Nish IA, Carmichael RP, Sandor GK. Metastatic mandibular retinoblastoma in a child reconstructed with soft tissue matrix expansion grafting: a preliminary report. J Oral Maxillofac Surg 2007;65:2329-35. https://doi.org/10.1016/j.joms.2006.11.012
  10. Warren SM, Borud LJ, Brecht LE, Longaker MT, Siebert JW. Microvascular reconstruction of the pediatric mandible. Plast Reconstr Surg 2007;119:649-61. https://doi.org/10.1097/01.prs.0000246482.36624.bd
  11. Bilkay U, Tiftikcioglu YO, Temiz G, Ozek C, Akin Y. Free-tissue transfers for reconstruction of oromandibular area in children. Microsurgery 2008;28:91-8. https://doi.org/10.1002/micr.20457
  12. Crosby MA, Martin JW, Robb GL, Chang DW. Pediatric mandibular reconstruction using a vascularized fibula flap. Head Neck 2008;30:311-9. https://doi.org/10.1002/hed.20695
  13. Li JS, Chen WL, Huang ZQ, Zhang DM. Pediatric mandibular reconstruction after benign tumor ablation using a vascularized fibular flap. J Craniofac Surg 2009;20:431-4. https://doi.org/10.1097/SCS.0b013e31819b96db
  14. Sinno H, Zadeh T. Desmoid tumors of the pediatric mandible: case report and review. Ann Plast Surg 2009;62:213-9. https://doi.org/10.1097/SAP.0b013e31817f020d
  15. Upton J, Guo L, Labow BI. Pediatric free-tissue transfer. Plast Reconstr Surg 2009;124(6 Suppl):e313-26. https://doi.org/10.1097/PRS.0b013e3181bf83f1
  16. Ducic Y, Young L. Improving aesthetic outcomes in pediatric free tissue oromandibular reconstruction. Arch Facial Plast Surg 2011; 13:180-4. https://doi.org/10.1001/archfaci.2010.113
  17. Pierse J, Ying-Peng Wun E, Pellecchia R, Wollenberg J. Treatment of a rare ganglioneuroma with resection and reconstruction of the mandible: a case report and literature review. J Oral Maxillofac Surg 2014;72:748.
  18. Zhang WB, Liang T, Peng X. Mandibular growth after paediatric mandibular reconstruction with the vascularized free fibula flap: a systematic review. Int J Oral Maxillofac Surg 2016;45:440-7. https://doi.org/10.1016/j.ijom.2015.12.014
  19. Hu L, Yang X, Han J, Wang Y, Wang X, Zhu M, et al. Secondary mandibular reconstruction for paediatric patients with longterm mandibular continuity defects: a retrospective study of six cases. Int J Oral Maxillofac Surg 2017;46:447-52. https://doi.org/10.1016/j.ijom.2016.10.015
  20. Malloy SM, Dronkers WJ, Firriolo JM, Nuzzi LC, Koudstaal MJ, Padwa BL, et al. Outcomes following microvascular mandibular reconstruction in pediatric patients and young adults. Plast Reconstr Surg Glob Open 2020;8:e3243.
  21. Valentini V, Califano L, Cassoni A, Marco DM, Raponi I, Priore P, et al. Maxillo-mandibular reconstruction in pediatric patients: how to do it? J Craniofac Surg 2018;29:761-6. https://doi.org/10.1097/SCS.0000000000004380
  22. Nam JW, Nam W, Cha IH, Kim HJ. Considerations for mandibular reconstruction in the pediatric patient following resection of malignant tumors. J Craniofac Surg 2019;30:e163-8. https://doi.org/10.1097/SCS.0000000000005098
  23. Volk AS, Riad SSH, Kania KE, Davies L, Wirthlin JO, Pederson WC, et al. Quantifying free fibula flap growth after pediatric mandibular reconstruction. J Craniofac Surg 2020;31:e710-4. https://doi.org/10.1097/SCS.0000000000006639
  24. Iconomou TG, Zuker RM, Phillips JH. Mandibular reconstruction in children using the vascularized fibula. J Reconstr Microsurg 1999;15:83-90. https://doi.org/10.1055/s-2007-1000075
  25. Guo L, Ferraro NF, Padwa BL, Kaban LB, Upton J. Vascularized fibular graft for pediatric mandibular reconstruction. Plast Reconstr Surg 2008;121:2095-105. https://doi.org/10.1097/PRS.0b013e3181712399
  26. Genden EM, Buchbinder D, Chaplin JM, Lueg E, Funk GF, Urken ML. Reconstruction of the pediatric maxilla and mandible. Arch Otolaryngol Head Neck Surg 2000;126:293-300. https://doi.org/10.1001/archotol.126.3.293
  27. Kolomvos N, Iatrou I, Theologie-Lygidakis N, Tzerbos F, Schoinohoriti O. Iliac crest morbidity following maxillofacial bone grafting in children: a clinical and radiographic prospective study. J Craniomaxillofac Surg 2010;38:293-302. https://doi.org/10.1016/j.jcms.2009.10.004
  28. Rashid M, Tamimy MS, Ehtesham-Ul-Haq, Sarwar SU, Rizvi ST. Benign paediatric mandibular tumours: experience in reconstruction using vascularised fibula. J Plast Reconstr Aesthet Surg 2012;65:e325-31. https://doi.org/10.1016/j.bjps.2012.07.006
  29. Bianchi B, Ferri A, Ferrari S, Copelli C, Multinu A, Di Blasio C, et al. Microvascular reconstruction of mandibular defects in paediatric patients. J Craniomaxillofac Surg 2011;39:289-95. https://doi.org/10.1016/j.jcms.2010.05.005
  30. Race, Ethnicity, and Genetics Working Group. The use of racial, ethnic, and ancestral categories in human genetics research. Am J Hum Genet 2005;77:519-32. https://doi.org/10.1086/491747
  31. Sato M, Tanaka N, Sato T, Amagasa T. Oral and maxillofacial tumours in children: a review. Br J Oral Maxillofac Surg 1997;35: 92-5. https://doi.org/10.1016/S0266-4356(97)90682-3
  32. Sharma P, Williams R, Monaghan A. Spontaneous mandibular regeneration: another option for mandibular reconstruction in children? Br J Oral Maxillofac Surg 2013;51:e63-6. https://doi.org/10.1016/j.bjoms.2012.04.255
  33. Okoturo E, Ogunbanjo OV, Arotiba GT. Spontaneous regeneration of the mandible: an institutional audit of regenerated bone and osteocompetent periosteum. J Oral Maxillofac Surg 2016; 74:1660-7. https://doi.org/10.1016/j.joms.2016.02.007
  34. Adekeye EO. Rapid bone regeneration subsequent to subtotal mandibulectomy: report of an unusual case. Oral Surg Oral Med Oral Pathol 1977;44:521-6. https://doi.org/10.1016/0030-4220(77)90293-6
  35. Ahmad O, Omami G. Self-regeneration of the mandible following hemimandibulectomy for ameloblastoma: a case report and review of literature. J Maxillofac Oral Surg 2015;14(Suppl 1): 245-50. https://doi.org/10.1007/s12663-012-0462-7
  36. Byars LT, Schatten WE. Subperiosteal segmental resection of the mandible. Plast Reconstr Surg Transplant Bull 1960;25:142-5. https://doi.org/10.1097/00006534-196002000-00003
  37. Budal J. The surgical removal of large osteofibromas: the postoperative osteogenic capacity of the periosteum. Oral Surg Oral Med Oral Pathol 1970;30:303-8. https://doi.org/10.1016/0030-4220(70)90305-1
  38. Cardinal L, Dominguez GC, Marodin AL, Rau LH. Unusual spontaneous mandibular regeneration of a large defect followed by orthodontics, alveolar distraction, and dental implant rehabilitation: a 10-year follow-up. J Oral Maxillofac Surg 2016;74: 786-93. https://doi.org/10.1016/j.joms.2015.11.013
  39. de Villa GH, Chen CT, Chen YR. Spontaneous bone regeneration of the mandible in an elderly patient: a case report and review of the literature. Chang Gung Med J 2003;26:363-9.
  40. Coen Pramono D. Spontaneous bone regeneration after mandible resection in a case of ameloblastoma: a case report. Ann Acad Med Singap 2004;33(4 Suppl):59-62. https://doi.org/10.47102/annals-acadmedsg.V33N4p59S
  41. Elbeshir EI. Spontaneous regeneration of the mandibular bone following hemimandibulectomy. Br J Oral Maxillofac Surg 1990; 28:128-30. https://doi.org/10.1016/0266-4356(90)90140-G
  42. Kamegai A, Mori M, Inoue S. Mandibular reconstruction using electrically stimulated periosteum. J Craniomaxillofac Surg 1990; 18:8-13. https://doi.org/10.1016/S1010-5182(05)80597-9
  43. Espinosa SA, Villanueva J, Hampel H, Reyes D. Spontaneous regeneration after juvenile ossifying fibroma resection: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102:e32-5. https://doi.org/10.1016/j.tripleo.2006.03.027
  44. Kazanjian VH. Spontaneous regeneration of bone following excision of section of the mandible. Am J Orthod Oral Surg 1946; 32:242-8. https://doi.org/10.1016/0096-6347(46)90016-6
  45. Keizer S, Tuinzing DB. Spontaneous regeneration of a unilaterally absent mandibular condyle. J Oral Maxillofac Surg 1985;43: 130-2. https://doi.org/10.1016/0278-2391(85)90061-8
  46. Kisner WH. Spontaneous posttraumatic mandibular regeneration. Plast Reconstr Surg 1980;66:442-7. https://doi.org/10.1097/00006534-198066030-00023
  47. Martins WD, de Castro Avila LF. Partial spontaneous bone regeneration subsequent to mandibulectomy. J Contemp Dent Pract 2004;5:108-20.
  48. Nagase M, Ueda K, Suzuki I, Nakajima T. Spontaneous regeneration of the condyle following hemimandibulectomy by disarticulation. J Oral Maxillofac Surg 1985;43:218-20. https://doi.org/10.1016/0278-2391(85)90164-8
  49. Shuker S. Spontaneous regeneration of the mandible in a child: a sequel to partial avulsion as a result of a war injury. J Maxillofac Surg 1985;13:70-3. https://doi.org/10.1016/S0301-0503(85)80019-9
  50. Nwoku AL. Unusually rapid bone regeneration following mandibular resection. J Maxillofac Surg 1980;8:309-15. https://doi.org/10.1016/S0301-0503(80)80119-6
  51. Boyne PJ. The restoration of resected mandibles in children without the use of bone grafts. Head Neck Surg 1983;6:626-31. https://doi.org/10.1002/hed.2890060203
  52. Ogunlewe MO, Akinwande JA, Ladeinde AL, Adeyemo WL. Spontaneous regeneration of whole mandible after total mandibulectomy in a sickle cell patient. J Oral Maxillofac Surg 2006; 64:981-4. https://doi.org/10.1016/j.joms.2006.02.008
  53. Khodayari A, Khojasteh A, Kiani M, Nayebi A, Mehrdad L, Vahdatinia M. Spontaneous regeneration of the mandible after hemimandibulectomy: report of a case. J Dent (Tehran) 2011; 8:152-6.
  54. Abdulai AE. Complete spontaneous bone regeneration following partial mandibulectomy. Ghana Med J 2012;46:174-7.
  55. Adebayo ET, Fomete B, Ajike SO. Spontaneous bone regeneration following mandibular resection for odontogenic myxoma. Ann Afr Med 2012;11:182-5. https://doi.org/10.4103/1596-3519.96882
  56. Throndson RR, Johnson JM. Spontaneous regeneration of bone after resection of central giant cell lesion: a case report. Tex Dent J 2013;130:1201-9.
  57. Anyanechi CE, Saheeb BD, Bassey GO. Spontaneous bone regeneration after segmental mandibular resection: a retrospective study of 13 cases. Int J Oral Maxillofac Surg 2016;45:1268-72. https://doi.org/10.1016/j.ijom.2016.04.011
  58. Ruggiero SL, Donoff RB. Bone regeneration after mandibular resection: report of two cases. J Oral Maxillofac Surg 1991;49: 647-52. https://doi.org/10.1016/0278-2391(91)90349-Q
  59. Bataineh AB. Spontaneous bone regeneration of the mandible: in a case of osteosarcoma and literature review. Austin J Dent 2016; 3:1031.
  60. Guven O. Formation of condyle-like structure after treatment of temporomandibular joint ankylosis: literature review and long-term follow-up of two patients. Case Rep Med 2017;2017: 9060174.
  61. Whitmyer CC, Esposito SJ, Smith JD, Zins JE. Spontaneous regeneration of a resected mandible in a preadolescent: a clinical report. J Prosthet Dent 1996;75:356-9. https://doi.org/10.1016/S0022-3913(96)90024-4
  62. Rai S, Rattan V, Jolly SS, Sharma VK, Mubashir MM. Spontaneous regeneration of bone in segmental mandibular defect. J Maxillofac Oral Surg 2019;18:224-8. https://doi.org/10.1007/s12663-018-1153-9
  63. Mesgarzadeh AH, Abadi AH, Keshani F. Seven-year follow-up of spontaneous bone regeneration following segmental mandibulectomy: alternative option for mandibular reconstruction. Dent Res J (Isfahan) 2019;16:435-40. https://doi.org/10.4103/1735-3327.270780
  64. Chalmers J, Gray DH, Rush J. Observations on the induction of bone in soft tissues. J Bone Joint Surg Br 1975;57:36-45. https://doi.org/10.1302/0301-620X.57B1.36
  65. Ma JL, Pan JL, Tan BS, Cui FZ. Determination of critical size defect of minipig mandible. J Tissue Eng Regen Med 2009;3:615-22. https://doi.org/10.1002/term.203
  66. Ganguly P, Toghill B, Pathak S. Aging, bone marrow and nextgeneration sequencing (NGS): recent advances and future perspectives. Int J Mol Sci 2021;22:12225.
  67. Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet 2020;21: 630-44. https://doi.org/10.1038/s41576-020-0258-4
  68. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021;372:n160.
  69. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of Genetic Association Studies (STREGA): an extension of the STROBE statement. Genet Epidemiol 2009;33:581-98. https://doi.org/10.1002/gepi.20410
  70. Li Z, Pan J, Ma J, Zhang Z, Bai Y. Microarray gene expression of periosteum in spontaneous bone regeneration of mandibular segmental defects. Sci Rep 2017;7:13535.
  71. Al-Kattan R, Retzepi M, Calciolari E, Donos N. Microarray gene expression during early healing of GBR-treated calvarial critical size defects. Clin Oral Implants Res 2017;28:1248-57. https://doi.org/10.1111/clr.12949
  72. Ivanovski S, Hamlet S, Retzepi M, Wall I, Donos N. Transcriptional profiling of "guided bone regeneration" in a critical-size calvarial defect. Clin Oral Implants Res 2011;22:382-9. https://doi.org/10.1111/j.1600-0501.2010.02104.x
  73. Matsushima S, Isogai N, Jacquet R, Lowder E, Tokui T, Landis WJ. The nature and role of periosteum in bone and cartilage regeneration. Cells Tissues Organs 2011;194:320-5. https://doi.org/10.1159/000324642
  74. Runyan CM, Gabrick KS. Biology of bone formation, fracture healing, and distraction osteogenesis. J Craniofac Surg 2017;28: 1380-9. https://doi.org/10.1097/SCS.0000000000003625
  75. Huang X, Saint-Jeannet JP. Induction of the neural crest and the opportunities of life on the edge. Dev Biol 2004;275:1-11. https://doi.org/10.1016/j.ydbio.2004.07.033
  76. Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012;366:34-54. https://doi.org/10.1016/j.ydbio.2011.12.041
  77. Stricker S, Mundlos S. FGF and ROR2 receptor tyrosine kinase signaling in human skeletal development. Curr Top Dev Biol 2011;97:179-206. https://doi.org/10.1016/B978-0-12-385975-4.00013-9
  78. Berendsen AD, Olsen BR. Bone development. Bone 2015;80: 14-8. https://doi.org/10.1016/j.bone.2015.04.035
  79. Nusspaumer G, Jaiswal S, Barbero A, Reinhardt R, Ishay Ronen D, Haumer A, et al. Ontogenic identification and analysis of mesenchymal stromal cell populations during mouse limb and long bone development. Stem Cell Reports 2017;9:1124-38. https://doi.org/10.1016/j.stemcr.2017.08.007
  80. Colnot C, Zhang X, Knothe Tate ML. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res 2012; 30:1869-78. https://doi.org/10.1002/jor.22181
  81. Wang X, Yu YY, Lieu S, Yang F, Lang J, Lu C, et al. MMP9 regulates the cellular response to inflammation after skeletal injury. Bone 2013;52:111-9. https://doi.org/10.1016/j.bone.2012.09.018
  82. Kolar P, Gaber T, Perka C, Duda GN, Buttgereit F. Human early fracture hematoma is characterized by inflammation and hypoxia. Clin Orthop Relat Res 2011;469:3118-26. https://doi.org/10.1007/s11999-011-1865-3
  83. Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev 2010;16:427-34. https://doi.org/10.1089/ten.teb.2009.0687
  84. Franquinho F, Liz MA, Nunes AF, Neto E, Lamghari M, Sousa MM. Neuropeptide Y and osteoblast differentiation: the balance between the neuro-osteogenic network and local control. FEBS J 2010;277:3664-74. https://doi.org/10.1111/j.1742-4658.2010.07774.x
  85. Portal-Nunez S, Lozano D, Esbrit P. Role of angiogenesis on bone formation. Histol Histopathol 2012;27:559-66.
  86. Nunes AF, Liz MA, Franquinho F, Teixeira L, Sousa V, Chenu C, et al. Neuropeptide Y expression and function during osteoblast differentiation: insights from transthyretin knockout mice. FEBS J 2010;277:263-75. https://doi.org/10.1111/j.1742-4658.2009.07482.x
  87. Ruocco MG, Karin M. Control of osteoclast activity and bone loss by IKK subunits: new targets for therapy. Adv Exp Med Biol 2007;602:125-34.  https://doi.org/10.1007/978-0-387-72009-8_16
  88. Hashimoto K, Kaito T, Furuya M, Seno S, Okuzaki D, Kikuta J, et al. In vivo dynamic analysis of BMP-2-induced ectopic bone formation. Sci Rep 2020;10:4751.
  89. Reyes R, Rodriguez JA, Orbe J, Arnau MR, Evora C, Delgado A. Combined sustained release of BMP2 and MMP10 accelerates bone formation and mineralization of calvaria critical size defect in mice. Drug Deliv 2018;25:750-6. https://doi.org/10.1080/10717544.2018.1446473
  90. Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, et al. Wnt proteins promote bone regeneration. Sci Transl Med 2010;2: 29ra30.
  91. Minear S, Leucht P, Miller S, Helms JA. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair. J Bone Miner Res 2010;25:1196-207.  https://doi.org/10.1002/jbmr.29