DOI QR코드

DOI QR Code

가압을 통한 도시형 생활 폐기물 기반 합성가스발효 공정 개발

Municipal Solid Waste-derived Syngas Fermentation Process by Pressurization

  • Subin Shin (Gwangju Clean Energy Research Center, Korea Institute of Energy Research) ;
  • Jae Hee Go (Gwangju Clean Energy Research Center, Korea Institute of Energy Research) ;
  • Myounghoon Moon (Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology) ;
  • Min-Sik Kim (Bioenergy and Resources Upcycling Research Laboratory, Korea, Institute of Energy Reserach) ;
  • Mungyu Lee (Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology) ;
  • In Seop Chang (Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology) ;
  • Seongsoo Son (CMC department PI Team, Kobiolabs) ;
  • Gwon Woo Park (Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology)
  • 투고 : 2023.10.11
  • 심사 : 2023.12.12
  • 발행 : 2023.12.25

초록

Global efforts are focused on achieving carbon neutrality due to the increases in the levels of greenhouse gases. Moreover, the greenhouse gases generated from the disposal of municipal solid waste (MSW) are the primary sources of emissions in South Korea. In this study, we conducted the biological conversion of syngas (CO, H2, and CO2) generated from MSW gasification. The MSW-derived syngas was used as a feed source for cultivating Eubacterium limosum KIST612, and pressurization was employed to enhance gas solubility in culture broth. However, the pH of the medium decreased owing to the pressurization because of the CO2 in the syngas and the cultivation-associated organic acid production. The replacement of conventional HEPES buffer with a phosphate buffer led to an approximately 2.5-fold increase in acetic acid concentration. Furthermore, compared with the control group, the pressurized reactor exhibited a maximum 8.28-fold increase in the CO consumption rate and a 3.8-fold increase in the H2 consumption rate.

키워드

과제정보

본 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2021R1A5A1028138).

참고문헌

  1. Johari, A., Ahmed, S.I., Hashim, H., Alkali, H., and Ramli, M., 2012, "Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia", Renewable and Sustainable Energy Reviews, 16(5), 2907-2912. https://doi.org/10.1016/j.rser.2012.02.005
  2. Luo, S., Xiao, B., Hu, Z., Liu, S., Guan, Y., and Cai, L., 2010, "Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor", Bioresour. Technol., 101(16), 6517-6520. https://doi.org/10.1016/j.biortech.2010.03.060
  3. Popli, K., Lim, J., Kim, H.K., Kim, Y.M., Tuu, N.T., and Kim, S., 2020, "Prediction of greenhouse gas emission from municipal solid waste for South Korea", Environmental Engineering Research, 25(4), 462-469. https://doi.org/10.4491/eer.2019.019
  4. Hwang, K.L., Choi, S.M., Kim, M.K., Heo, J.B., and Zoh, K.D., 2017, "Emission of greenhouse gases from waste incineration in Korea", Journal of Environmental Management, 196, 710-718. https://doi.org/10.1016/j.jenvman.2017.03.071
  5. Ryu, C., 2010, "Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea", J&AWMA, 60(2), 176-183.
  6. Ryu, C. and Shin, D., 2013, "Combined heat and power from municipal solid waste: Current status and issues in South Korea", Energies, 6(1), 45-57. https://doi.org/10.3390/en6010045
  7. Chang, I.S., Kim, D.H., Kim, B.H., Shin, P. K., Sung, H.C., and Lovitt, R.W., 1998, "CO Fermentation of Eubacterium limosum KIST612", Journal of Microbiology and Biotechnology, 8(2), 134-140.
  8. Jeong, J., Bertsch, J., Hess, V., Choi, S., Choi, I.G., Chang, I.S., and Muller, V., 2015, "Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612", Appl. and Environ. Microbiol., 81(14), 4782-4790. https://doi.org/10.1128/AEM.00675-15
  9. Roh, H., Ko, H.J., Kim, D., Choi, D.G., Park, S., Kim, S., Chang, I.S., and Choi, I.G., 2011, "Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612", J. Bacteriol., 193(1), 307-308. https://doi.org/10.1128/JB.01217-10
  10. Chang, I.S., Kim, D.H., Kim, B.H., Shin, P.K., Yoon, J.H., Lee, J.S., and Park,Y. H., 1997, "Isolation and identification of carbon monoxide utilizing anaerobe, Eubacterium limosum KIST612", Microbiology and Biotechnology Letters, 25(1), 1-8. https://doi.org/10.1046/j.1472-765X.1997.00155.x
  11. Dietrich, H.M., Kremp, F., Oppinger, C., Ribaric, L., and Muller, V., 2021, "Biochemistry of methanol-dependent acetogenesis in Eubacterium callanderi KIST612", Environ. microbiol., 23(8), 4505-4517. https://doi.org/10.1111/1462-2920.15643
  12. Ragsdale, S.W., and Pierce, E., 2008, "Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation", Biochim. Biophys. Acta, Proteins Proteomics, 1784(12), 1873-1898. https://doi.org/10.1016/j.bbapap.2008.08.012
  13. Drake, H.L., Kusel, K., Matthies, C., 2006, "Acetogenic prokaryotes", The Prokaryotes, Springer, New York, 354-420.
  14. Fuchs, G., 2011, "Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?" Annu. Rev. Microbiol., 65, 631-658. https://doi.org/10.1146/annurev-micro-090110-102801
  15. Fast, A.G. and Papoutsakis, E.T., 2012, "Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals", Current Opinion in Chemical Engineering, 1(4), 380-395. https://doi.org/10.1016/j.coche.2012.07.005
  16. Kiefer, D., Merkel, M., Lilge, L., Henkel, M., and Hausmann, R., 2021, "From acetate to bio-based products: Underexploited potential for industrial biotechnology", Trends in Biotechnology, 39(4), 397-411. https://doi.org/10.1016/j.tibtech.2020.09.004
  17. Kim, J.Y., Park, S., Jeong, J., Lee, M., Kang, B., Jang, S.H., Jeon, J., Jang, N., Oh, S., and Park, Z.Y., et al., 2021, "Methanol supply speeds up synthesis gas fermentation by methylotrophic-acetogenic bacterium, Eubacterium limosum KIST612", Bioresour. Technol., 321, 124521.
  18. Durre, P. and Eikmanns, B.J., 2015, "C1-carbon sources for chemical and fuel production by microbial gas fermentation", Current Opinion in Biotechnology, 35, 63-72. https://doi.org/10.1016/j.copbio.2015.03.008
  19. Liew, F., Martin, M.E., Tappel, R.C., Heijstra, B.D., Mihalcea, C., and Kopke, M., 2016, "Gas fermentation-A flexible platform for commolercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks", Front. Microbiol., 7, 694.
  20. Molitor, B., Richter, H., Martin, M.E., Jensen, R.O., Juminaga, A., Mihalcea, C., and Angenent, L.T., 2016, "Carbon recovery by fermentation of CO-rich off gases-Turning steel mills into biorefineries", Bioresour. Technol., 215, 386-396. https://doi.org/10.1016/j.biortech.2016.03.094
  21. Kwak, T.H., Maken, S., Lee, S., Park, J.W., Min, B.R., and Yoo, Y.D., 2006, "Environmental aspects of gasification of Korean municipal solid waste in a pilot plant", Fuel, 85(14-15), 2012-2017. https://doi.org/10.1016/j.fuel.2006.03.012
  22. Chang, I.S., Kim, B.H., Kim, D.H., Lovitt, R.W., and Sung, H.C., 1999, "Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium", J. Biosci. Bioeng., 88(6), 682-685. https://doi.org/10.1016/S1389-1723(00)87102-9
  23. Chang, I.S., Kim, D., Kim, B.H., and Lovitt, R.W., 2007, "Use of an industrial grade medium and medium enhancing effects on high cell density CO fermentation by Eubacterium limosum KIST612", Biotechnol. Lett., 29(8), 1183-1187. https://doi.org/10.1007/s10529-007-9382-x
  24. Phillips, J.R., Atiyeh, H.K., Tanner, R.S., Torres, J.R., Saxena, J., Wilkins, M.R., and Huhnke, R.L., 2015, "Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques", Bioresour. Technol., 190, 114-121. https://doi.org/10.1016/j.biortech.2015.04.043
  25. Gao, J., Atiyeh, H.K., Phillips, J.R., Wilkins, M.R., and Huhnke R.L., 2013, "Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei", Bioresour. Technol., 147, 508-515. https://doi.org/10.1016/j.biortech.2013.08.075
  26. Bertsch, J. and Muller, V., 2015, "CO metabolism in the acetogen Acetobacterium woodii", Appl. Environ. Microbiol., 81(17), 5949-5956. https://doi.org/10.1128/AEM.01772-15
  27. Kim, M.S., Fitriana, H.N., Kim, T.W., Kang, S.G., Jeon, S.G., Chung, S.H., Park, G.W., and Na, J.G., 2017, "Enhancement of the hydrogen productivity in microbial water gas shift reaction by Thermococcus onnurineus NA1 using a pressurized bioreactor", International Journal of Hydrogen Energy, 42(45), 27593-27599. https://doi.org/10.1016/j.ijhydene.2017.07.024
  28. He, Y., Cassarini, C., and Lens, P.N.L., 2021, "Bioethanol production from H2/CO2 by solventogenesis using anaerobic granular sludge: Effect of process parameters", Front. Microbiol., 12, 647370.