DOI QR코드

DOI QR Code

Growth Response and Durability of Landscape of Ornamental Miscanthus sinensis Cultivars to Drought, Rain Fall and Low Temperature Condition

건조, 강우, 저온 환경에서 관상용 억새 원예품종의 생장 반응과 경관의 지속성

  • Ki-Dong Kim (Department of Golf Course Landscaping Business, Nousbo ENG) ;
  • Young-Sun Kim (Department of Horticultural Science, College of Natural and Life Sciences, Daegu University) ;
  • Jeong-Ho Lee (Department of Golf Course Management, Korea Golf University)
  • 김기동 (주식회사 누보이엔지) ;
  • 김영선 (대구대학교 과학생명융합대학 원예학과) ;
  • 이정호 (한국골프대학교 골프코스경영과)
  • Received : 2023.11.09
  • Accepted : 2023.12.01
  • Published : 2023.12.31

Abstract

Miscanthus sinensis Andersson (Poaceae) cultivars exhibit excellent visual appeal as ornamental grasses and adapt well to diverse environmental conditions. This study focused on assessing the growth response and landscape durability of seven popular Miscanthus cultivars ('Gold Breeze', 'Strictus', 'Morning Light', 'Variegatus', 'Gracillimus', 'Kleine Fontäne', 'Common') under drought, rainfall and low temperature condition. The test cultivars were transplanted and cultivated on research plots in 2013, with data collected from June 2017 to February 2018. Plant materials were categorized into three types based on the amount of the water lost; group I ('Kleine Fontäne', 'Variegatus', 'Strictus'), experiencing the most significant water loss; group II ('Common', 'Gracillimus'); and group III ('Gold Breeze', 'Morning Light') where the least water loss occurred. The drought resistance index (DRI) remained low as water shortage conditions persisted. The lodged angle underwent more pronounced changes in reproductive growth stage than in vegetative growth stage, notably decreasing after heading. Discoloration patterns were classified into two types: group I ('Common', 'Gold Breeze', 'Kleine Fontäne', 'Strictus') and group II ('Gracillimus', 'Morning Light', 'Variegatus') based on the periods of peak duration.

Keywords

References

  1. Wi HR, Kim SY, Kim HY, Yu HJ, Park JY (2015) A study of vegetation changes according to future climate change-focus on crop of the warm temperate zone and crop of subarctic regions. Application Geography, 32, 1-26.
  2. Nakashima K, Kanamori N, Nagatoshi Y, Fujita Y, Takasaki H, Urano K, Mogami J, Mizoi J, MertzHenning LM et al. (2018) Application of biotechnology to generate drought-tolerant soybean plants in Brazil: Development of genetic engineering technology of crops with stress tolerance against degradation of global environment. Crop Production under Stressful Conditions: Application of Cutting-edge Science and Technology in Developing Countries, 111-130. https://doi.org/10.1007/978-981-10-7308-3_7.
  3. Ramirez-Villegas J, Heinemann AB, Pereira de Castro A, Breseghello F, Navarro-Racines C, Li T, Rebolledo MC, Challinor AJ (2018) Breeding implications of drought stress under future climate for upland rice in Brazil. Global Change Biology, 24(5), 2035-2050. https://doi.org/10.1111/gcb.14071.
  4. Swain P, Raman A, Singh SP, Kumar A (2017) Breeding drought tolerant rice for shallow rainfed ecosystem of Eastern India. Field Crops Research, 209, 168-178. https://doi.org/10.1016/j.fcr.2017.05.007.
  5. Meyer WA, Hoffman L, Bonos SA (2017) Breeding cool-season turfgrass cultivars for stress tolerance and sustainability in a changing environment. International Turfgrass Society Research Journal, 13(1), 3-10. https://doi.org/10.2134/itsrj2016.09.0806.
  6. Choi JH, Park BJ (2016) Study on the possibility of paper mill sludge application for green roof throughout assessment of plant drought tolerance. Journal of Korea Technical Association of the Pulp and Paper Industry, 48(6), 150-157. https://doi.org/10.7584/jktappi.2016.12.48.6.150.
  7. Davidson CG, Gobin SM (1998) Evaluation of ornamental grasses for the northern great plains. Journal of Environmental Horticulture, 16(4), 218-229. https://doi.org/10.24266/0738-2898-16.4.218.
  8. Dougherty RF, Quinn LD, Voigt TB, Barney JN (2015) Response of naturalized and ornamental biotypes of Miscanthus sinensis to soil-moisture and shade stress. Northeastern Nat. 22(2), 372-386. https://www.jstor.org/stable/26453674. https://doi.org/10.1656/045.022.0210
  9. Cho SR, Kim JH, Sim SR (2015) Practical use of several ground covers on a slope revegetation construction. Journal of the Korean Society of Environmental Restoration Technology, 18(3), 97-107. https://doi.org/10.13087/kosert.2015.18.3.97.
  10. Kim KD, Kim YJ, Lee JM, Lee JH, Joo YK (2013) Seed treatment and plug production of ornamental grasses (Gramineae spp.). Weed and Turfgrass Science, 2(4), 376-380. https://doi.org/10.5660/WTS.2013.2.4.376.
  11. Yeon JY, Kim MJ, Lee KM, Park SH, Kim WS (2022) Comparative analysis of planting characteristics by garden type. Flower Research Journal, 20(1), 18-25. https://doi.org/10.11623/frj.2022.30.1.03.
  12. Booth WE (1941) Revegetation of abandoned fields in Kansas and Oklahoma. American Journal of Botany, 28, 415-422. https://doi.org/10.2307/2436819.
  13. Lee SK (1992) Natural grassland in Korea. Journal of the Korean Grassland Science, 12(3), 48-55.
  14. Jeong EG, Kim KJ, Cheon AR, Lee CK, Kim SL, Brar DS, Son JR (2006) Characterization of grain quality under loading time and grade at ripening. Korean Journal of Crop Science, 51(5), 440-444.
  15. Lim JT, Lee KS, Cho KS, Song DS (1992) Analysis of lodging related characteristics in rice plants. Korean Journal of Crop Science, 37(1), 78-85.
  16. Lee KW, Choi BS, Park JH, Woo SH, Lee CW (2013) Growth, lodging reduction as affected by iprobenfos-metconazole (IPM) in direct-seeded rice on flooded paddy field. Korean Journal of Corp Science, 58(4), 393-398. https://doi.org/10.7740/kjcs.2013.58.4.393.
  17. Marcelo PNM, Tapic RT, Manangkil OE (2017) Relationship of culm anatomy and lodging resistance in rice (Oryza sativa L.) genotypes under direct-seeded system. International Journal of Agricultural Technology, 13, 2367-2385.
  18. Darke R (2007) The Encyclopedia of Grasses for the Livable Landscapes. pp. 13-59, Timber Press, Portland, OR, USA.
  19. Lee CB (2003) Colored Flora of Korea. p. 434, Hyang Mun Sa, Seoul, Korea.
  20. Nilsen ET (1987) Influence of water relations and temperature on leaf movements of Rhododendron species. Plant Physiology, 83(3), 607-612. https://doi.org/10.1104/pp.83.3.607.
  21. Quinn M, Macleod C (2003) Grasses Scapes: Gardening with Ornamental Grasses. pp. 34-35, Ball Publishing, Batavia, IL, USA.
  22. Kim GY, Lee CW, Joo GJ (2004) The evaluation of early growth pattern of Miscanthus sacchariflorus after cutting and burning in the Woopo wetland. Korean Journal of Ecology and Environment, 37(2), 255-262.
  23. Lee JP, Kim DH (2005) Improvement of green-up zoysiagrass and cool-season grass during early spring in Korea. Korean Journal of Turfgrass Science, 19(2), 103-113.
  24. Yoo SY, Eom KC, Park SH, Kim TW (2012) Possibility of drought stress indexing by chlorophyll fluorescence imaging technique in red pepper (Capsicum annuum L.). Korean Journal of Soil Science and Fertilizer, 45(5), 676-682. https://doi.org/10.7745/KJSSF.2012.45.5.676.
  25. An GH, Kim JK, Moon YH, Cha YL, Yoon YM, Koo BC, Park KG (2013) A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, identified by growth characteristics and a specific SCAR marker. Bioprocess Biosystems Engineering, 36, 695-703. https://doi.org/10.1007/s00449-013-0893-7.
  26. Kang TH, Zhao HX (2013) Assessment of roof-rainwater utilization system and drought resistance of ground cover plants. Journal of the Korean Institute of Landscape Architecture, 41(5), 1-8. https://doi.org/10.9715/KILA.2013.41.5.001.
  27. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB et al. (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agronomy Journal, 93, 1013-1019. https://doi.org/10.2134/agronj2001.9351013x.
  28. Clifton-Brown JC, Lewandowski I, Bangerth F, Jones MB (2002) Comparative responses to water stress in stay-green, rapid-and slow senescing genotypes of the biomass crop, Miscanthus. The New Phytologist, 154(2), 335-345. https://doi.org/10.1046/j.1469-8137.2002.00381.x.
  29. Alvarez E, Scheiber SM, Beeson JrRC (2007) Drought tolerance responses of purple lovegrass and 'Adagio' maiden grass. HortScience, 42, 1695-1699. https://doi.org/10.21273/HORTSCI.42.7.1695.
  30. De Vega JJ, Teshome A, Klaas M, Grant J, Finnan J, Barth S (2021) Physiological and transcriptional response to drought stress among bioenergy grass Miscanthus species. Biotechnolgy for Biofuels, 14, 60. https://doi.org/10.1186/s13068-021-01915-z.
  31. Greef JM, Deuter M, Jung C, Schondelmaier J (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genetic Resource and Crop Evolution, 44, 185-195. https://doi.org/10.1023/A:1008693214629
  32. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). American Journal of Botany, 89(2), 279-286. https://doi.org/10.3732/ajb.89.2.279.
  33. Slavov G, Robson P, Jensen E, Hodgson E, Farrar K, Allison G, Hawkins S, Tomas-Jone S, Ma XF et al. (2013) Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass Miscanthus sinensis. Global Change Biology: Bioenergy, 5(5), 562-571. https://doi.org/10.1111/gcbb.12025.
  34. Cichorz S, Goska M, Litwiniec A (2014) Miscanthus: Genetic diversity and genotype identification using ISSR and RAPD markers. Molecular Biotechnology, 56(10), 911-924. https://doi.org/10.1007/s12033-014-9770-0.
  35. Zhao Y, Basak S, Fleener CE, Egnin M, Sacks EJ, Prakash CS, He G (2017) Genetic diversity of Miscanthus sinensis in US naturalized populations. Global Change Biology: Bioenergy, 9(5), 965-972. https://doi.org/10.1111/gcbb.12404.
  36. Ju JH, Kim WT, Yoon YH (2011) Change in growth of Chrysanthemum zawadskii var. coreanum as effected by different green roof system under rainfed conditions. Journal of the Korean Institute of Landscape Architecture, 39(1), 117-123. https://doi.org/10.9715/KILA.2011.39.1.117.
  37. Ahn GY, Han SW, Lee EH (2013) Soil moisture reduction pattern and that influences for plants in the condition of no rainfall and no irrigation. Korean Journal of Environment and Ecology, 27(6), 745-756. https://doi.org/10.13047/KJEE.2013.27.6.745.
  38. Park SG, Choi SH, Hong SH, Lee SC, You CY (2017) Growth environment characteristics and decline in Mt. Seunghak's Miscanthus sinensis community. Journal of Korean Institute of Landscape Architecture, 45(5), 14-28. https://doi.org/10.9715/KILA.2017.45.5.014.
  39. Kim SH, Choi GW, Kim JH (2018) Flow response and habitat region of aquatic plants in urban streams. Journal of Wetlands Research, 20(1), 35-42. https://doi.org/10.17663/JWR.2018.20.1.035.
  40. Kim KD, Joo YK (2019) Assessment of heading performance and inflorescence visibility in Miscanthus sinensis cultivars. Korean Journal of Horticultural Science and Technology, 37(2), 290-303. https://doi.org/10.12972/kjhst.20190028.
  41. Verma V, Worland AJ, Savers EJ, Fish L, Caligari PDS, Snape, JW (2005) Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breeding, 124(3), 234-241. https://doi.org/10.1111/j.1439-0523.2005.01070.x.
  42. Yao J, Ma H, Zhang P, Ren L, Yang X, Yao G, Zhang P, Zhou M (2011) Inheritance of stem strength and its correlations with culm morphological traits in wheat (Triticum aestivum L.). Canadian Journal of Plant Science, 91, 1065-1070. https://doi.org/10.4141/cjps2011-033.
  43. Zeid M, Belay G, Mulkey S, Poland J, Sorrells ME (2011) QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef. Theoretical and Applied Genetics, 122, 77-93. https://doi.org/10.1007/s00122-010-1424-4.
  44. Kaack K, Schwarz KU, Brander PE (2003) Variation in morphology, anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Industrial Crops and Products, 17(2), 131-142. https://doi.org/10.1016/S0926-6690(02)00093-6.
  45. Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K (2008) Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theoretical and Applied Genetics, 117, 749-757. https://doi.org/10.1007/s00122-008-0816-1.
  46. Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds MP (2010) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany, 62(2), 469-486. https://doi.org/10.1093/jxb/erq300.
  47. Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. GCB Bioenergy, 1(4), 297-307. https://doi.org/10.1111/j.1757-1707.2009.01022.x.
  48. Rosser B (2012) Evaluation of Miscanthus winter hardiness and yield potential in Ontario, pp 73-77, Masters thesis, University of Guelph, Canada.
  49. Yokoazwa M, Hara T (1995) Foliage profile, size structure and stem diameter-plant height relationship in crowded corn plant population. Annals of Botany, 76(3), 271-285. https://doi.org/10.1006/anbo.1995.1096.
  50. Hiyane R, Shinichi H, Tang C, Boyer JS (2010) Sucrose feeding reverses shade-induced kernel losses in maize. Annals of Botany, 106(3), 395-440. https://doi.org/10.1093/aob/mcq132.
  51. Feng G, Li YY, Jing XQ, Cao ZB, Lu BS, Huang CL (2010) Relationship of root and stem characters with lodging resistance of summer maize. Journal of Henan Agricultural Science, 11, 20-22.
  52. Yoen JY, Kim MJ, Shin YC, Lee KM, Seo JH, Kim WS (2022) Case analysis of seasonal landscape characteristics of four domestic gardens. Flower Research Journal, 20(3), 121-128. https://doi.org/10.11623/frj.2022.30.3.06.
  53. Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: The role of actin cytoskeleton and membrane fluidity. The Plant Journal: for Cell and molecular Biology, 23(6), 785-794. https://doi.org/10.1046/j.1365-313x.2000.00845.x.
  54. Perry TO, Baldwin GW (1996) Winter breakdown of the photosynthetic apparatus of evergreen species. Forest Science, 12(3), 298-300. https://doi.org/10.1093/forestscience/12.3.298.
  55. Ann YJ, Kim BW, Sung KI, Kim CJ (1995) Changes in the growth, chemical composition and nutritive yield of Miscanthus sinensis at different cutting dates. Journal of the Korean Society of Grassland Science, 15(4), 274-278.
  56. Kim KD, Lee JH, Joo YK (2015) Spring green-up and winter leaf discoloration of three ornamental grasses (Gramineae spp.). Weed and Turfgrass Science, 4(1), 49-57. https://doi.org/10.5660/WTS.2015.4.1.49.
  57. Younger VB (1961) Growth and flowering of Zoysia species in response to temperature, photoperiods, and light intensities. Crop Science, 1(2), 91-93. https://doi.org/10.2135/cropsci1961.0011183X000100020003x.