Acknowledgement
This work is supported by National Natural Science Foundation of China (52172354, 52077007), R&D Program of Beijing Municipal Education Commission (KM202211232023).
References
- Hannan, M.A., Lipu, M.S.H., Hussain, A., Mohamed, A.: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834-854 (2017) https://doi.org/10.1016/j.rser.2017.05.001
- Yang, A., Wang, Y., Yang, F., Wang, D., et al.: A comprehensive investigation of lithium-ion battery degradation performance at different discharge rates. J. Power Sources 443, 227108 (2019)
- Manoharan, P., Mohankumar, R., Karthick, K., Sowmya, R.: SoC estimation and monitoring of li-ion cell using kalman-filter algorithm. Indonesian J. Electr. Eng. Inform. 6(4), 418-427 (2018)
- Asghar, F., Talha, M., Kim, S.H., Ra, I.-H.: Simulation study on battery state of charge estimation using Kalman filter. J. Adv. Comput. Intell. Intell. Inform. 20(6), 861-866 (2016) https://doi.org/10.20965/jaciii.2016.p0861
- Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Sources. 134(2), 277-292 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.033
- Taborelli, C., Onori, S.: State of charge estimation using extended Kalman filters for battery management system. In: 2014 IEEE international electric vehicle conference (IEVC), pp. 1-8 (2014)
- Al-Gabalawy, M., Hosny, N.S., Dawson, J.A., Omar, A.I.: State of charge estimation of a Li-ion battery based on extended Kalman filtering and sensor bias. Int. J. Energy Res. 45(5), 6708-6726 (2021) https://doi.org/10.1002/er.6265
- Peng, N., Zhang, S., Guo, X., Zhang, X.: Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter. Int. J. Energy Res. 45(1), 975-990 (2021) https://doi.org/10.1002/er.6088
- Cui, X., He, Z., Li, E., Cheng, A., et al.: State-of-charge estimation of power lithium-ion batteries based on an embedded micro control unit using a square root cubature Kalman filter at various ambient temperatures. Int. J. Energy Res. 43(8), 3561-3577 (2019) https://doi.org/10.1002/er.4503
- Zhang, C., Zhu, Y., Dong, G., Wei, J.: Data-driven lithium-ion battery states estimation using neural networks and particle filtering. Int. J. Energy Res. 43(14), 8230-8241 (2019)
- Xiong, R., Yu, Q., Wang, L.Y., Lin, C.: A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter. Appl. Energy 207, 346-353 (2017) https://doi.org/10.1016/j.apenergy.2017.05.136
- He, H., Xiong, R., Zhang, X., Sun, F., Fan, J.: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model. IEEE Trans. Veh. Technol. 60(4), 1461-1469 (2011) https://doi.org/10.1109/TVT.2011.2132812
- Sun, F., Hu, X., Zou, Y., Li, S.: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 36(5), 3531-3540 (2011) https://doi.org/10.1016/j.energy.2011.03.059
- Lee, S., Kim, H., Lee, K.: Current measurement offset error compensation in vector-controlled SPMSM drive systems. IEEE J. Emerg. Topics Power Electron. 10(2), 2619-2628 (2022) https://doi.org/10.1109/JESTPE.2022.3151351
- Zheng, Y., Ouyang, M., Han, X., et al.: Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. J. Power Sources 377, 161-188 (2018) https://doi.org/10.1016/j.jpowsour.2017.11.094
- Han, X., Ouyang, M., Lu, L., Li, J.: Simplification of physicsbased electrochemical model for lithium ion battery on electric vehicle. Part II: pseudo-two-dimensional model simplification and state of charge estimation. J. Power Sources. 278, 814-825 (2015) https://doi.org/10.1016/j.jpowsour.2014.08.089
- Zhang, Y., Xiong, R., He, H., Qu, X., Pecht, M.: Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries. eTransportation. 1, 100004 (2019)
- Guo, Z., Qiu, X., Hou, G., Liaw, B.Y., Zhang, C.: State of health estimation for lithium ion batteries based on charging curves. J. Power Sources 249, 457-462 (2014) https://doi.org/10.1016/j.jpowsour.2013.10.114
- Zheng, L., Zhu, J., Lu, D.D.-C., Wang, G., He, T.: Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy 150, 759-769 (2018) https://doi.org/10.1016/j.energy.2018.03.023
- Guha, A., Patra, A.: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models. IEEE Trans. Transp Electr. 4(1), 135-146 (2018) https://doi.org/10.1109/TTE.2017.2776558
- Wei, Z., Leng, F., He, Z., Zhang, W., Li, K.: Online state of charge and state of health estimation for a lithium-ion battery based on a data-model fusion method. Energies 11(7), 1810 (2018)
- Wassiliadis, N., Adermann, J., Frericks, A., Pak, M., Reiter, C., Lohmann, B., Lienkamp, M.: Revisiting the dual extended kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis. J. Energy Storage. 19, 73-87 (2018) https://doi.org/10.1016/j.est.2018.07.006
- Shen, P., Ouyang, M., Lu, L., Li, J.: State of charge, state of health and state of function co-estimation of lithium-ion batteries for electric vehicles. In: 2016 IEEE vehicle power and propulsion conference (VPPC) 1-5 (2016)
- Zheng, Y., Cui, Y., Han, X., Dai, H., Ouyang, M.: Lithium-ion battery capacity estimation based on open circuit voltage identification using the iteratively reweighted least squares at different aging levels. J. Energy Storage. 44, 103487 (2021)
- Hu, M., Hua, W., Wu, Z., Dai, N., Xiao, H., Wang, W.: Compensation of current measurement offset error for permanent magnet synchronous machines. IEEE Trans. Power Electron. 35(10), 11119-11128 (2020) https://doi.org/10.1109/TPEL.2020.2978230
- Tang, X., Wang, Y., Chen, Z.: A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer. J. Power Sources 296, 23-29 (2015) https://doi.org/10.1016/j.jpowsour.2015.07.028
- Takegami, T., Wada, T.: State-of-charge and parameter estimation of lithium-ion battery using dual adaptive filter. In: 2017 IEEE conference on control technology and applications (CCTA) 1332-1337 (2017)
- Jiang, B., Dai, H., Wei, X., Xu, T.: Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset. Appl. Energy 253, 113619 (2019)
- Zheng, F., Xing, Y., Jiang, J., Sun, B., Kim, J., et al.: Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Appl. Energy 183, 513-525 (2016) https://doi.org/10.1016/j.apenergy.2016.09.010
- Xing, Y., He, W., Pecht, M., Tsui, K.L.: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl. Energy 113, 106-115 (2014) https://doi.org/10.1016/j.apenergy.2013.07.008