DOI QR코드

DOI QR Code

Joint estimation for SOC and capacity after current measurement offset redress with two-stage forgetting factor recursive least square method

  • Weiwei Huo (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University) ;
  • Yunxu Jia (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University) ;
  • Yong Chen (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University) ;
  • Aobo Wang (School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University)
  • Received : 2023.03.13
  • Accepted : 2023.07.25
  • Published : 2023.12.20

Abstract

To ensure the safe operation of electric vehicles (EVs), it is essential to estimate the internal status of lithium-ion batteries online. When current sensors are faulty, current measurement offset (CMO) interference occurs, and traditional state estimation algorithms become invalid due to incorrect current data. In this paper, a two-stage forgetting factor recursive least squares (FFRLS) algorithm is proposed for online identification of battery parameters and estimation of the CMO. Afterwards, a joint estimation framework is established to obtain the state of charge (SOC) and capacity with adaptive extended Kalman filter (AEKF) and iterative reweighted least squares (IRLS) algorithms, respectively. The open-source dataset of the CALCE Battery Research Group is used to verify the accuracy and robustness of the algorithm. The results show that the mean absolute error (MAE) of the CMO online estimation is less than 2.5 mA, the mean absolute percentage error (MAPE) of the SOC estimation is less than 2%, and the error in estimating the usable capacity is less than 2.5%.

Keywords

Acknowledgement

This work is supported by National Natural Science Foundation of China (52172354, 52077007), R&D Program of Beijing Municipal Education Commission (KM202211232023).

References

  1. Hannan, M.A., Lipu, M.S.H., Hussain, A., Mohamed, A.: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834-854 (2017) https://doi.org/10.1016/j.rser.2017.05.001
  2. Yang, A., Wang, Y., Yang, F., Wang, D., et al.: A comprehensive investigation of lithium-ion battery degradation performance at different discharge rates. J. Power Sources 443, 227108 (2019)
  3. Manoharan, P., Mohankumar, R., Karthick, K., Sowmya, R.: SoC estimation and monitoring of li-ion cell using kalman-filter algorithm. Indonesian J. Electr. Eng. Inform. 6(4), 418-427 (2018)
  4. Asghar, F., Talha, M., Kim, S.H., Ra, I.-H.: Simulation study on battery state of charge estimation using Kalman filter. J. Adv. Comput. Intell. Intell. Inform. 20(6), 861-866 (2016) https://doi.org/10.20965/jaciii.2016.p0861
  5. Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Sources. 134(2), 277-292 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.033
  6. Taborelli, C., Onori, S.: State of charge estimation using extended Kalman filters for battery management system. In: 2014 IEEE international electric vehicle conference (IEVC), pp. 1-8 (2014)
  7. Al-Gabalawy, M., Hosny, N.S., Dawson, J.A., Omar, A.I.: State of charge estimation of a Li-ion battery based on extended Kalman filtering and sensor bias. Int. J. Energy Res. 45(5), 6708-6726 (2021) https://doi.org/10.1002/er.6265
  8. Peng, N., Zhang, S., Guo, X., Zhang, X.: Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter. Int. J. Energy Res. 45(1), 975-990 (2021) https://doi.org/10.1002/er.6088
  9. Cui, X., He, Z., Li, E., Cheng, A., et al.: State-of-charge estimation of power lithium-ion batteries based on an embedded micro control unit using a square root cubature Kalman filter at various ambient temperatures. Int. J. Energy Res. 43(8), 3561-3577 (2019) https://doi.org/10.1002/er.4503
  10. Zhang, C., Zhu, Y., Dong, G., Wei, J.: Data-driven lithium-ion battery states estimation using neural networks and particle filtering. Int. J. Energy Res. 43(14), 8230-8241 (2019)
  11. Xiong, R., Yu, Q., Wang, L.Y., Lin, C.: A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter. Appl. Energy 207, 346-353 (2017) https://doi.org/10.1016/j.apenergy.2017.05.136
  12. He, H., Xiong, R., Zhang, X., Sun, F., Fan, J.: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model. IEEE Trans. Veh. Technol. 60(4), 1461-1469 (2011) https://doi.org/10.1109/TVT.2011.2132812
  13. Sun, F., Hu, X., Zou, Y., Li, S.: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 36(5), 3531-3540 (2011) https://doi.org/10.1016/j.energy.2011.03.059
  14. Lee, S., Kim, H., Lee, K.: Current measurement offset error compensation in vector-controlled SPMSM drive systems. IEEE J. Emerg. Topics Power Electron. 10(2), 2619-2628 (2022) https://doi.org/10.1109/JESTPE.2022.3151351
  15. Zheng, Y., Ouyang, M., Han, X., et al.: Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. J. Power Sources 377, 161-188 (2018) https://doi.org/10.1016/j.jpowsour.2017.11.094
  16. Han, X., Ouyang, M., Lu, L., Li, J.: Simplification of physicsbased electrochemical model for lithium ion battery on electric vehicle. Part II: pseudo-two-dimensional model simplification and state of charge estimation. J. Power Sources. 278, 814-825 (2015) https://doi.org/10.1016/j.jpowsour.2014.08.089
  17. Zhang, Y., Xiong, R., He, H., Qu, X., Pecht, M.: Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries. eTransportation. 1, 100004 (2019)
  18. Guo, Z., Qiu, X., Hou, G., Liaw, B.Y., Zhang, C.: State of health estimation for lithium ion batteries based on charging curves. J. Power Sources 249, 457-462 (2014) https://doi.org/10.1016/j.jpowsour.2013.10.114
  19. Zheng, L., Zhu, J., Lu, D.D.-C., Wang, G., He, T.: Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy 150, 759-769 (2018) https://doi.org/10.1016/j.energy.2018.03.023
  20. Guha, A., Patra, A.: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models. IEEE Trans. Transp Electr. 4(1), 135-146 (2018) https://doi.org/10.1109/TTE.2017.2776558
  21. Wei, Z., Leng, F., He, Z., Zhang, W., Li, K.: Online state of charge and state of health estimation for a lithium-ion battery based on a data-model fusion method. Energies 11(7), 1810 (2018)
  22. Wassiliadis, N., Adermann, J., Frericks, A., Pak, M., Reiter, C., Lohmann, B., Lienkamp, M.: Revisiting the dual extended kalman filter for battery state-of-charge and state-of-health estimation: a use-case life cycle analysis. J. Energy Storage. 19, 73-87 (2018) https://doi.org/10.1016/j.est.2018.07.006
  23. Shen, P., Ouyang, M., Lu, L., Li, J.: State of charge, state of health and state of function co-estimation of lithium-ion batteries for electric vehicles. In: 2016 IEEE vehicle power and propulsion conference (VPPC) 1-5 (2016)
  24. Zheng, Y., Cui, Y., Han, X., Dai, H., Ouyang, M.: Lithium-ion battery capacity estimation based on open circuit voltage identification using the iteratively reweighted least squares at different aging levels. J. Energy Storage. 44, 103487 (2021)
  25. Hu, M., Hua, W., Wu, Z., Dai, N., Xiao, H., Wang, W.: Compensation of current measurement offset error for permanent magnet synchronous machines. IEEE Trans. Power Electron. 35(10), 11119-11128 (2020) https://doi.org/10.1109/TPEL.2020.2978230
  26. Tang, X., Wang, Y., Chen, Z.: A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer. J. Power Sources 296, 23-29 (2015) https://doi.org/10.1016/j.jpowsour.2015.07.028
  27. Takegami, T., Wada, T.: State-of-charge and parameter estimation of lithium-ion battery using dual adaptive filter. In: 2017 IEEE conference on control technology and applications (CCTA) 1332-1337 (2017)
  28. Jiang, B., Dai, H., Wei, X., Xu, T.: Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset. Appl. Energy 253, 113619 (2019)
  29. Zheng, F., Xing, Y., Jiang, J., Sun, B., Kim, J., et al.: Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Appl. Energy 183, 513-525 (2016) https://doi.org/10.1016/j.apenergy.2016.09.010
  30. Xing, Y., He, W., Pecht, M., Tsui, K.L.: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl. Energy 113, 106-115 (2014) https://doi.org/10.1016/j.apenergy.2013.07.008