DOI QR코드

DOI QR Code

Adjusted power of class D-ZVS resonant inverter controlled by buck converter for LCLC resonant tank

  • Jirapong Jittakort (Department of Electrical Engineering, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi) ;
  • Suwat Kitcharoenwat (Department of Electrical and Telecommunication Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep)
  • Received : 2023.01.22
  • Accepted : 2023.06.14
  • Published : 2023.12.20

Abstract

This paper presents a modification of class D zero-voltage-switching (D-ZVS) resonant inverter for ultrasonic cleaning applications. The output power is controlled using the adjustable duty of a buck converter. Combined with a phase-locked loop control, the switching frequency of the inverter is automatically adjusted to maintain a lagging phase angle under load-parameter variations during the cleaning process. With the proposed modification, the inverter maintains ZVS throughout the power control range. Moreover, the snubber capacitor connection is used to reduce turn-of losses. The control algorithms are implemented using digital signal processing (TMS320F28335 for buck converter and TMS320F28379D for inverter). The proposed method for a 100-W piezoceramic ultrasonic transducer (PZT) is verified using computer simulation and laboratory experimental results and is found to be more efficient than other methods. The operating frequency and power ranges under investigation are 36.5-36.96 kHz and 15-95 W, respectively.

Keywords

References

  1. Feuillard, G., Hue, L.P.T.H., Saadaoui, N., Nguyen, V.T., Lethiecq, M., Saillant, J.F.: Symmetric refector ultrasonic transducer modeling and characterization: role of the matching layer on electroacoustic performance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68(12), 3608-3615 (2021) https://doi.org/10.1109/TUFFC.2021.3101124
  2. Cordier, C., Dolabdjian, C.: Modeling of delta-e effect magnetic field sensors. IEEE Sens. J. 23(3), 2014-2020 (2023) https://doi.org/10.1109/JSEN.2022.3227592
  3. Yang, C., Sun, H., Liu, S., Qiu, L., Fang, Z., Zheng, Y.: A Broadband resonant noise matching technique for piezoelectric ultrasound transducers. IEEE Sens. J. 20(8), 4290-4299
  4. Hou, C., Fei, C., Li, Z., Zhang, S., Man, J., Chen, D., Wu, R., Li, D., Yang, Y., Feng, W.: Optimized backing layers design for high frequency broad bandwidth ultrasonic transducer. IEEE Trans. Biomed. Eng. 69(1), 475-481 (2022) https://doi.org/10.1109/TBME.2021.3098567
  5. Zhu, Y., Yang, T., Fang, Z., Li, T., Ye, S., Gao, X., Yang, M.: Super-resolution velocity reconstruction and control of ultrasonic motors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68(11), 3415-3422 (2021) https://doi.org/10.1109/TUFFC.2021.3092584
  6. Lu, Y., Zhang, H., Qian, J., Song, Y., Wang, B., Sun, H.: Equivalent circuit models for magnetoelastic resonance sensors with various surface loadings. IEEE Sens. J. 23(4), 3675-3684 (2023) https://doi.org/10.1109/JSEN.2023.3235982
  7. Khmelev, V.N., Shalunov, A.V., Nesterov, V.A.: Ultrasonic transducer with increased exposure power and frequency up to 100 kHz. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68(5), 1773-1782 (2021) https://doi.org/10.1109/TUFFC.2020.3029159
  8. Jittakort, J., Sangswang, A., Naetiladdanon, S., Koompai, C., Chudjuarjeen, S.: Full bridge resonant inverter using asymmetrical control with resonant-frequency tracking for ultrasonic cleaning application. J. Power Electron. 17(5), 1150-1159 (2017)
  9. Jittakort, J., Nimsontorn, J., Sirboonrueng, B., Chua-on, S., Pinpathomrat, P., Chudjuarjeen, S.: A class D voltage source resonant inverter for ultrasonic cleaning application. Proc. IEEE Eng. Appl. Sci. Technol. 1-4 (2018)
  10. Tang, J., Na, T., Zhang, Q.: A novel full-bridge step density modulation for wireless power transfer systems. IEEE Trans. Power Electron. 38(1), 41-45 (2023)
  11. Zong, S., Luo, H., Li, W., Deng, Y., He, X.: Asymmetrical duty cycle-controlled LLC resonant converter with equivalent switching frequency doubler. IEEE Trans. Power Electron. 31(7), 4963- 4973 (2016)
  12. Mustafa, A., Mekhilef, S.: Dual phase LLC resonant converter with variable frequency zero circulating current phase-shift modulation for wide input voltage range applications. IEEE Trans. Power Electron. 36(3), 2793-2807 (2021) https://doi.org/10.1109/TPEL.2020.3015799
  13. An, F., Zhao, B., Cui, B., Ma, Y., Zhang, X., Tang, X., Dong, L.: Asymmetric topology design and quasi-zero-loss switching composite modulation for IGCT-based high-capacity dc transformer. IEEE Trans. Power Electron. 38(4), 4745-4759 (2023) https://doi.org/10.1109/TPEL.2022.3228856
  14. Bak, Y.: Hardware-simulator development and implementation of battery charger for personal mobility devices. J. Power Electron. 23(2), 211-218 (2023) https://doi.org/10.1007/s43236-022-00580-1
  15. Guillen, P., Sarnago, H., Lucia, O., Burdio, J.M.: Series-resonant matrix inverter with asymmetrical modulation for improved power factor correction in flexible induction heating appliances. IEEE Trans. Power Electron. 70(2), 1421-1430 (2023)
  16. Lucia, O., Burdio, J.M., Millan, I., Acero, J., Barragan, L.A.: Efficiency-oriented design of ZVS half-bridge series resonant inverter with variable frequency duty cycle control. IEEE Trans. Power Electron. 25(7), 1671-1674 (2010) https://doi.org/10.1109/TPEL.2010.2042461
  17. Xie, W., Li, S., Smedley, K.M., Wang, J., Ji, Y., Yu, J.: A family of dual resonant switched-capacitor converter with passive regenerative snubber. IEEE Trans. Power Electron. 35(5), 4891-4904 (2020) https://doi.org/10.1109/TPEL.2019.2945796
  18. Sarnago, H., Lucia, O., Burdio, J.M.: Interleaved resonant boost inverter featuring SiC module for high-performance induction heating. IEEE Trans. Power Electron. 32(2), 1018-1029 (2017) https://doi.org/10.1109/TPEL.2016.2554607
  19. Olaya, A.C.C., Calosso, C.E., Friedt, J.M., Micalizio, S., Rubiola, E.: Phase noise and frequency stability of the red-pitaya internal PLL. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 66(2), 412-416 (2019) https://doi.org/10.1109/TUFFC.2018.2883830
  20. Xu, J., Qian, H., Qian, Q., Xie, S.: Modeling, stability, and design of the single-phase SOGI-based phase-locked loop considering the frequency feedback loop efect. IEEE Trans. Power Electron. 38(1), 987-1002 (2023) https://doi.org/10.1109/TPEL.2022.3201252
  21. Jiang, Y., Wang, L., Wang, Y., Wu, M., Zeng, Z., Liu, Y., Sun, J.: Phase-locked loop combined with chained trigger mode used for impedance matching in wireless high power transfer. IEEE Trans. Power Electron. 35(4), 4272-4285 (2020)  https://doi.org/10.1109/TPEL.2019.2936708