DOI QR코드

DOI QR Code

Online broadband grid impedance estimation method based on multi-objective optimized random PWM

  • Yan Du (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Shiyou Yang (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Chunran Gao (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Xiangzhen Yang (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Houbo Wu (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Jianhui Su (School of Electrical Engineering and Automation, Hefei University of Technology)
  • Received : 2022.12.27
  • Accepted : 2023.06.26
  • Published : 2023.12.20

Abstract

Grid-connected inverter (GCI)-based online grid impedance estimation (GIE) can be used in the fields of grid state monitoring, fault diagnosis, and the stability control of grid-connected equipment, which can collectively improve the intelligence of GCI. However, the available frequency range of GCI-based GIE is limited by the bandwidth of the controller because a perturbation signal is injected into the reference current. To broaden the bandwidth of grid impedance estimation, an online GIE technology based on multi-objective optimized random pulse width modulation (MOO-RPWM) is proposed in this paper. Besides taking advantage of the harmonic dispersion characteristic of RPWM, the distribution of the switching frequency is further optimized by the constraints on the measurement accuracy and the total harmonic distortion (THD) of the grid current. Moreover, the frequency boundary is constrained by the frequency range of GIE, the stability of the system, and power loss. A genetic algorithm (GA) is applied to obtain the switching frequency sequence that satisfies the optimization targets. A single-phase grid-connected inverter system is built on a StarSim hardware-in-the-loop (HIL) platform to verify that MOO-RPWM-based GIE has the advantages of a broad GIE range, high accuracy, and low disturbance.

Keywords

Acknowledgement

This work was funded by National Key R&D Program of China under Grant 2021YFB2601403.

References

  1. Wu, W., et al.: Sequence-impedance-based stability comparison between VSGs and traditional grid-connected inverters. IEEE Trans. Power Electron. 34(1), 46-52 (2019) https://doi.org/10.1109/TPEL.2018.2841371
  2. Mohammed, N., Kerekes, T., Ciobotaru, M.: An online eventbased grid impedance estimation technique using grid-connected inverters. IEEE Trans. Power Electron. 36(5), 6106-6117 (2021) https://doi.org/10.1109/TPEL.2020.3029872
  3. Fang, J., Deng, H., Goetz, S.M.: Grid impedance estimation through grid-forming power converters. IEEE Trans. Power Electron. 36(2), 2094-2104 (2021) https://doi.org/10.1109/TPEL.2020.3010874
  4. Cobreces, S., Bueno, E.J., Pizarro, D., Rodriguez, F.J., Huerta, F.: Grid impedance monitoring system for distributed power generation electronic interfaces. IEEE Trans. Instrum. Meas. 58(9), 3112-3121 (2009) https://doi.org/10.1109/TIM.2009.2016883
  5. Hofmann, N., Fuchs, F.W.: Minimal invasive equivalent grid impedance estimation in inductive-resistive power networks using extended Kalman filter. IEEE Trans. Power Electron. 29(2), 631-641 (2014) https://doi.org/10.1109/TPEL.2013.2259507
  6. Timbus, A.V., Teodorescu, R., Blaabjerg, F., Borup, U.: Online grid measurement and ENS detection for PV inverter running on highly inductive grid. IEEE Power Electron. Lett. 2(3), 77-82 (2004) https://doi.org/10.1109/LPEL.2004.834921
  7. Cai, W., Liu, B., Duan, S., Zou, C.: An islanding detection method based on dual-frequency harmonic current injection under grid impedance unbalanced condition. IEEE Trans. Ind. Inform. 9(2), 1178-1187 (2013) https://doi.org/10.1109/TII.2012.2209669
  8. Cheng, L., Ye, H., Wang, T., Dong, X., Li, Y.: Real-time grid impedance identification for synchronization stability control in grid-following converter. In: Proceedings of the IEEE International Electrical Energy Conference, CIEEC, pp. 1745-1750 (2022)
  9. Liu, C., Zhao, J., Wang, S., Lu, W., Qu, K.: Active identification method for line resistance in DC microgrid based on single pulse injection. IEEE Trans. Power Electron. 33(7), 5561-5564 (2018) https://doi.org/10.1109/TPEL.2017.2784565
  10. Dou, Q., Liu, J., Liu, Z., Liu, T.: A novel online grid impedance measurement method based on injecting pulses designed in frequency-domain. In: Proceedings of the IEEE 8th International Power Electronics and Motion Control Conference, pp. 2931-2936 (2016)
  11. Liu, Z., Liu, J., Liu, Z.: Analysis, design, and implementation of impulse-injection-based online grid impedance identification with grid-tied converters. IEEE Trans. Power Electron. 35(12), 12959-12976 (2020) https://doi.org/10.1109/TPEL.2020.2995016
  12. Roinila, T., Vilkko, M., Sun, J.: Broadband methods for online grid impedance measurement. Proceedings of the IEEE Energy Conversion Congress and Exposition, pp. 3003-3010 (2013)
  13. Roinila, T., Vilkko, M., Sun, J.: Online grid impedance measurement using discrete-interval binary sequence injection. IEEE J. Emerg. Sel. Top. Power Electron. 2(4), 985-993 (2014) https://doi.org/10.1109/JESTPE.2014.2357494
  14. Roinila, T., Messo, T.: Online grid-impedance measurement using ternary-sequence injection. IEEE Trans. Ind. Appl. 54(5), 5097- 5103 (2018) https://doi.org/10.1109/TIA.2018.2825938
  15. Kamala, S., Gorla, N.B.Y., Panda, S.K.: Small-signal stability improvement of microgrid with battery energy storage system based on real-time grid impedance measurement. IEEE Trans. Ind. Appl. 58(2), 2537-2546 (2022) https://doi.org/10.1109/TIA.2021.3140017
  16. Zhong, P., Sun, J., Qu, L., Yu, P., Zha, X.: An improved PRBSinjection-based grid impedance measurement method considering nonideal grid conditions. IEEE Trans. Ind. Electron. 70(6), 6452-6456 (2023) https://doi.org/10.1109/TIE.2022.3196379
  17. Qian, Q., Xie, S., Xu, J., Xu, K., Bian, S., Zhong, N.: Output impedance modeling of single-phase grid-tied inverters with capturing the frequency-coupling effect of PLL. IEEE Trans. Power Electron. 35(5), 5479-5495 (2020) https://doi.org/10.1109/TPEL.2019.2946984
  18. Wang, X., Blaabjerg, F.: Harmonic stability in power electronicbased power systems: concept, modeling, and analysis. IEEE Trans. Smart Grid. 10(3), 2858-2870 (2019) https://doi.org/10.1109/TSG.2018.2812712
  19. Suarez-Gonzalez, A., Garcia, P., Navarro-Rodriguez, A., Villa, G., Cano, J.M.: Sensorless unbalance modeling and estimation as an ancillary service for LV four-wire/three-phase power converters. IEEE Trans. Ind. Appl. 55(5), 4876-4885 (2019) https://doi.org/10.1109/TIA.2019.2918046
  20. Diana, V., Sumner, M., Zanchetta, P., Marinelli, M.: Non-invasive power system impedance monitoring for improved power quality. In: Proceedings of the 2nd International Conference on Power Electronics and Machine Drives (PEMD), pp. 265-268 (2004)
  21. Liserre, M., Blaabjerg, F., Teodorescu, R.: Grid impedance estimation via excitation of LCL-filter resonance. IEEE Trans. Ind. Appl. 43(5), 1401-1407 (2007) https://doi.org/10.1109/TIA.2007.904439
  22. Li, H., Liu, Y., Lu, J., Zheng, T., Yu, X.: Suppressing EMI in power converters via chaotic SPWM control based on spectrum analysis approach. IEEE Trans. Ind. Electron. 61(11), 6128- 6137 (2014) https://doi.org/10.1109/TIE.2014.2308131
  23. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Capacitor-currentfeedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Trans. Power Electron. 29(7), 3414-3427 (2014) https://doi.org/10.1109/TPEL.2013.2279206
  24. Fakhouri, A.A., Soltani, R.: Multi-objective robust optimization for the traffic sensors location problem. IEEE Access 9, 6225-6238 (2021) https://doi.org/10.1109/ACCESS.2020.3047045