Acknowledgement
This work was supported by the 2021 Scientific Research and Development Plan Fund Project of Hebei University of Economics and Business under Grant 2021QN02, and by the 2022 Hebei Innovation Capacity Improvement Plan under Grant 22557402D.
References
- Stapleton, G., Neill, S.: Grid-connected solar electric systems. Routledge, London (2012)
- Bollipo, R.B., Mikkili, S., Bonthagorla, P.K.: Hybrid, optimal, intelligent and classical PV MPPT techniques: a review. CSEE J. Power Energy Syst. 7(1), 9-33 (2021)
- Dadkhah, J., Niroomand, M.: Optimization methods of MPPT parameters for PV system: review, classification, and comparison. J. Mod. Power Syst. Clean Energy 9(2), 225-236 (2021) https://doi.org/10.35833/MPCE.2019.000379
- Bhattacharyya, S., Kumar P, D. S., Samanta, S., Mishra, S.: Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms. IEEE Trans. Sustain. Energy 12(1), 293-302 (2021) https://doi.org/10.1109/TSTE.2020.2991768
- Gunasekaran, M., Krishnasamy, V., Selvam, S., Almakhles, D.J., Anglani, N.: An adaptive resistance perturbation based MPPT algorithm for photovoltaic applications. IEEE Access 8, 196890-196901 (2020) https://doi.org/10.1109/ACCESS.2020.3034283
- Dang, V., Yang, M., Shim, Y., Lee, W., Baek, K.: An accurate time-based MPPT circuit with two-period tracking algorithm and convergence range averaging technique for IoT applications. IEEE Access 9, 31401-31410 (2021) https://doi.org/10.1109/ACCESS.2021.3060104
- Raiker, G. A., Loganathan, U., Reddy B, S.: Current control of boost converter for PV interface with momentum-based perturb and observe MPPT. IEEE Trans. Ind. Appl. 57(4), 4071-4079 (2021) https://doi.org/10.1109/TIA.2021.3081519
- Killi, M., Samanta, S.: Voltage-sensor-based MPPT for stand-alone PV systems through voltage reference control. IEEE J. Emerg. Top. Power Electron. 7(2), 1399-1407 (2019) https://doi.org/10.1109/JESTPE.2018.2864096
- Abdel-Rahim, O., Wang, H.: A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems. CPSS Trans. Power Electron. Appl. 5(2), 191-200 (2020) https://doi.org/10.24295/CPSSTPEA.2020.00016
- Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963-973 (2005) https://doi.org/10.1109/TPEL.2005.850975
- Tang, C., Wu, H., Liao, C., Wu, H.: An optimal frequency-modulated hybrid MPPT algorithm for the LLC resonant converter in PV power applications. IEEE Trans. Power Electron. 37(1), 944-954 (2022) https://doi.org/10.1109/TPEL.2021.3094676
- Pradhan, R., Subudhi, B.: Double integral sliding mode MPPT control of a photovoltaic system. IEEE Trans. Control Syst. Technol. 24(1), 285-292 (2016) https://doi.org/10.1109/TCST.2015.2420674
- Paz, F., Ordonez, M.: High-performance solar MPPT using switching ripple identification based on a lock-in amplifer. IEEE Trans. Ind. Electron 63(6), 3595-3604 (2016) https://doi.org/10.1109/TIE.2016.2530785
- Dadkhah, J., Niroomand, M.: Real-time MPPT optimization of PV systems by means of DCD-RLS based identification. IEEE Trans. Sus. Energ. 10(4), 2114-2122 (2019) https://doi.org/10.1109/TSTE.2018.2878826
- Ali, A., Almutairi, K., Padmanaban, S., Tirth, V., Algarni, S., Irshad, K., Islam, S., Zahir, M., Shafullah, M., Malik, M.Z.: Investigation of MPPT techniques under uniform and non-uniform solar irradiation condition-a retrospection. IEEE Access 8, 127368-127392 (2020) https://doi.org/10.1109/ACCESS.2020.3007710
- Zurbriggen, I.G., Ordonez, M.: PV energy harvesting under extremely fast changing irradiance: state-plane direct MPPT. IEEE Trans. Ind. Electron. 66(3), 1852-1861 (2019) https://doi.org/10.1109/TIE.2018.2838115
- Rezk, H., Aly, M., Al-Dhaifallah, M., Shoyama, M.: Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic applications. IEEE Access 7, 106427-106438 (2019) https://doi.org/10.1109/ACCESS.2019.2932694
- Li, H., Yang, D., Su, W., Lu, J., Yu, X.: An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading. IEEE Trans. Ind. Electron. 66(1), 265-275 (2019) https://doi.org/10.1109/TIE.2018.2829668
- Divyasharon, R., Banu, R. N., Devaraj, D.: Artifcial neural network based MPPT with CUK converter topology for PV systems under varying climatic conditions. Proc. IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, 11-13 (2019)
- Roy, R.B., Rokonuzzaman, M., Amin, N., Mishu, M.K., Alahakoon, S., Rahman, S., Mithulananthan, N., Rahman, K.S., Shakeri, M., Pasupuleti, J.: A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system. IEEE Access 9, 102137-102152 (2021) https://doi.org/10.1109/ACCESS.2021.3096864
- Hussain, A., Garg, M.M., Korukonda, M.P., Hasan, S., Behera, L.: A parameter estimation based MPPT method for a PV system using Lyapunov control scheme. IEEE Trans. Sustain. Energy 10(4), 2123-2132 (2019) https://doi.org/10.1109/TSTE.2018.2878924
- Jeong, J., Shim, M., Maeng, J., Park, I., Kim, C.: A high-efciency charger with adaptive input ripple MPPT for low-power thermoelectric energy harvesting achieving 21% efficiency improvement. IEEE Trans. Power Electron. 35(1), 347-358 (2020) https://doi.org/10.1109/TPEL.2019.2912030
- Guo, B., Su, M., Sun, Y., Wang, H., Liu, B., Zhang, X., Pou, J., Yang, Y., Davari, P.: Optimization design and control of single-stage single-phase PV inverters for MPPT improvement. IEEE Trans. Power Electron. 35(12), 13000-13016 (2020) https://doi.org/10.1109/TPEL.2020.2990923
- Basu, T.S., Maiti, S.: A hybrid modular multilevel converter for solar power integration. IEEE Trans. Ind. Appl. 55(5), 5166-5177 (2019) https://doi.org/10.1109/TIA.2019.2928245
- Venkatramanan, D., John, V.: Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance. IEEE Trans. Ind. Appl. 55(6), 6234-6246 (2019) https://doi.org/10.1109/TIA.2019.2937856
- Darroman, Y., Ferre, A.: 42-V/3-V Watkins-Johnson converter for automotive use. IEEE Trans. Power Electron. 21(3), 592-602 (2006) https://doi.org/10.1109/TPEL.2006.872381
- Grant, D.A., Darroman, Y.: Inverse Watkins-Johnson converter - analysis reveals its merits. Electron. Lett. 39(18), 1342-1343 (2003) https://doi.org/10.1049/el:20030860
- Mishra, S., Adda, R., Joshi, A.: Inverse Watkins-Johnson topology-based inverter. IEEE Trans. Power Electron. 27(3), 1066-1070 (2012) https://doi.org/10.1109/TPEL.2011.2177278
- Choung, S. H., Kwasinski, A.: Multiple-input modified inverse Watkins-Johnson converter without coupled inductors. Proc. IEEE Energy Conversion Congress and Exposition, 12-16 (2010)
- Grant, D.A., Darroman, Y.: Watkins-Johnson converter completes tapped inductor converter matrix. Electron. Lett. 39(3), 271-272 (2003) https://doi.org/10.1049/el:20030186
- Hu, L., Wei, X.: Improved Watkins-Johnson topology-based inverter with dual low-side switch and synchronous control strategy. IEICE Electron. Express 15(7), 1-8 (2018)
- Hu, L., Wei, X., Ma, J.: Zhang, J: Single stage high-frequency non-isolated step-up sinusoidal inverter with three ground-side power switches. IEICE Electron. Express 15(11), 1-10 (2018)
- Hu, L., Wei, X., Luo, Y., Ma, J.: Synchronous high step-down ratio non-isolated LED constant current driver based on improved Watkins-Johnson topology. IEEE Access 7, 18345-18353 (2019) https://doi.org/10.1109/ACCESS.2019.2897057
- Hu, L., Luo, Y.: Active PFC stage based on synchronous inverse Watkins-Johnson topology. IEICE Electron. Express 18(21), 1-5 (2021)
- Hu, L.: Watkins-Johnson derivative topology and its application. Ph.D. dissertation of Beijing Jiaotong Univ., Beijing(2019)
- Luo, F.L., Ye, H.: Small signal analysis of energy factor and mathematical modeling for power DC-DC converters. IEEE Trans. Power Electron. 22(1), 69-79 (2007) https://doi.org/10.1109/TPEL.2006.886652
- Pokharel, M., Ghosh, A., Ho, C.N.: M: Small-signal modelling and design validation of PV-controllers with INC-MPPT using CHIL. IEEE Trans. Energy Convers. 34(1), 361-371 (2019) https://doi.org/10.1109/TEC.2018.2874563
- Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics, 2nd edn. Kluwer, New York (2012)
- Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Power electronics and control techniques for maximum energy harvesting in photovoltaic systems. CRC, Boca Raton (2013)
- Hu, L., Wei, X., Zhang, J., Ma, J.: Testing and experimental study on output characteristic curve of photovoltaic cell. Journal of Beijing Jiaotong Univ. 39(2), 122-127 (2015)