DOI QR코드

DOI QR Code

Improved Watkins-Johnson topology-based photovoltaic MPPT converter

  • Liang Hu (School of Information Technology, Hebei University of Economics and Business) ;
  • Yuan Luo (School of Accounting, Hebei University of Economics and Business)
  • Received : 2022.12.15
  • Accepted : 2023.06.14
  • Published : 2023.12.20

Abstract

A photovoltaic (PV) maximum power point tracking (MPPT) converter behaves as a decoupling stage that dynamically tracks the peak power of a PV generator with an output characteristic curve that is nonlinear and changes with respect to solar irradiation and cell temperature. Depending on different voltage transfer functions and application requirements, the classical MPPT converter topologies include buck, boost, buck-boost, flyback, etc. In this paper, an improved Watkins-Johnson (WJ) topology is added to the family of MPPT converters. This improved topology has the merits of a simple circuit structure, power switches that are easy drive, synchronous mode capability, and high efficiency at a marginal duty cycle. To balance the tracking speed and tracking stability of the WJ topology, key issues including the perturbation period and perturbation amplitude have been resolved by means of small-signal modeling and an analysis according to the PV model parameters and converter electrical elements. An experimental prototype has been designed, constructed, and utilized to verify the feasibility of the proposed concept.

Keywords

Acknowledgement

This work was supported by the 2021 Scientific Research and Development Plan Fund Project of Hebei University of Economics and Business under Grant 2021QN02, and by the 2022 Hebei Innovation Capacity Improvement Plan under Grant 22557402D.

References

  1. Stapleton, G., Neill, S.: Grid-connected solar electric systems. Routledge, London (2012)
  2. Bollipo, R.B., Mikkili, S., Bonthagorla, P.K.: Hybrid, optimal, intelligent and classical PV MPPT techniques: a review. CSEE J. Power Energy Syst. 7(1), 9-33 (2021)
  3. Dadkhah, J., Niroomand, M.: Optimization methods of MPPT parameters for PV system: review, classification, and comparison. J. Mod. Power Syst. Clean Energy 9(2), 225-236 (2021) https://doi.org/10.35833/MPCE.2019.000379
  4. Bhattacharyya, S., Kumar P, D. S., Samanta, S., Mishra, S.: Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms. IEEE Trans. Sustain. Energy 12(1), 293-302 (2021) https://doi.org/10.1109/TSTE.2020.2991768
  5. Gunasekaran, M., Krishnasamy, V., Selvam, S., Almakhles, D.J., Anglani, N.: An adaptive resistance perturbation based MPPT algorithm for photovoltaic applications. IEEE Access 8, 196890-196901 (2020) https://doi.org/10.1109/ACCESS.2020.3034283
  6. Dang, V., Yang, M., Shim, Y., Lee, W., Baek, K.: An accurate time-based MPPT circuit with two-period tracking algorithm and convergence range averaging technique for IoT applications. IEEE Access 9, 31401-31410 (2021) https://doi.org/10.1109/ACCESS.2021.3060104
  7. Raiker, G. A., Loganathan, U., Reddy B, S.: Current control of boost converter for PV interface with momentum-based perturb and observe MPPT. IEEE Trans. Ind. Appl. 57(4), 4071-4079 (2021) https://doi.org/10.1109/TIA.2021.3081519
  8. Killi, M., Samanta, S.: Voltage-sensor-based MPPT for stand-alone PV systems through voltage reference control. IEEE J. Emerg. Top. Power Electron. 7(2), 1399-1407 (2019) https://doi.org/10.1109/JESTPE.2018.2864096
  9. Abdel-Rahim, O., Wang, H.: A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems. CPSS Trans. Power Electron. Appl. 5(2), 191-200 (2020) https://doi.org/10.24295/CPSSTPEA.2020.00016
  10. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963-973 (2005) https://doi.org/10.1109/TPEL.2005.850975
  11. Tang, C., Wu, H., Liao, C., Wu, H.: An optimal frequency-modulated hybrid MPPT algorithm for the LLC resonant converter in PV power applications. IEEE Trans. Power Electron. 37(1), 944-954 (2022) https://doi.org/10.1109/TPEL.2021.3094676
  12. Pradhan, R., Subudhi, B.: Double integral sliding mode MPPT control of a photovoltaic system. IEEE Trans. Control Syst. Technol. 24(1), 285-292 (2016) https://doi.org/10.1109/TCST.2015.2420674
  13. Paz, F., Ordonez, M.: High-performance solar MPPT using switching ripple identification based on a lock-in amplifer. IEEE Trans. Ind. Electron 63(6), 3595-3604 (2016) https://doi.org/10.1109/TIE.2016.2530785
  14. Dadkhah, J., Niroomand, M.: Real-time MPPT optimization of PV systems by means of DCD-RLS based identification. IEEE Trans. Sus. Energ. 10(4), 2114-2122 (2019) https://doi.org/10.1109/TSTE.2018.2878826
  15. Ali, A., Almutairi, K., Padmanaban, S., Tirth, V., Algarni, S., Irshad, K., Islam, S., Zahir, M., Shafullah, M., Malik, M.Z.: Investigation of MPPT techniques under uniform and non-uniform solar irradiation condition-a retrospection. IEEE Access 8, 127368-127392 (2020) https://doi.org/10.1109/ACCESS.2020.3007710
  16. Zurbriggen, I.G., Ordonez, M.: PV energy harvesting under extremely fast changing irradiance: state-plane direct MPPT. IEEE Trans. Ind. Electron. 66(3), 1852-1861 (2019) https://doi.org/10.1109/TIE.2018.2838115
  17. Rezk, H., Aly, M., Al-Dhaifallah, M., Shoyama, M.: Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic applications. IEEE Access 7, 106427-106438 (2019) https://doi.org/10.1109/ACCESS.2019.2932694
  18. Li, H., Yang, D., Su, W., Lu, J., Yu, X.: An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading. IEEE Trans. Ind. Electron. 66(1), 265-275 (2019) https://doi.org/10.1109/TIE.2018.2829668
  19. Divyasharon, R., Banu, R. N., Devaraj, D.: Artifcial neural network based MPPT with CUK converter topology for PV systems under varying climatic conditions. Proc. IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, 11-13 (2019)
  20. Roy, R.B., Rokonuzzaman, M., Amin, N., Mishu, M.K., Alahakoon, S., Rahman, S., Mithulananthan, N., Rahman, K.S., Shakeri, M., Pasupuleti, J.: A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system. IEEE Access 9, 102137-102152 (2021) https://doi.org/10.1109/ACCESS.2021.3096864
  21. Hussain, A., Garg, M.M., Korukonda, M.P., Hasan, S., Behera, L.: A parameter estimation based MPPT method for a PV system using Lyapunov control scheme. IEEE Trans. Sustain. Energy 10(4), 2123-2132 (2019) https://doi.org/10.1109/TSTE.2018.2878924
  22. Jeong, J., Shim, M., Maeng, J., Park, I., Kim, C.: A high-efciency charger with adaptive input ripple MPPT for low-power thermoelectric energy harvesting achieving 21% efficiency improvement. IEEE Trans. Power Electron. 35(1), 347-358 (2020) https://doi.org/10.1109/TPEL.2019.2912030
  23. Guo, B., Su, M., Sun, Y., Wang, H., Liu, B., Zhang, X., Pou, J., Yang, Y., Davari, P.: Optimization design and control of single-stage single-phase PV inverters for MPPT improvement. IEEE Trans. Power Electron. 35(12), 13000-13016 (2020) https://doi.org/10.1109/TPEL.2020.2990923
  24. Basu, T.S., Maiti, S.: A hybrid modular multilevel converter for solar power integration. IEEE Trans. Ind. Appl. 55(5), 5166-5177 (2019) https://doi.org/10.1109/TIA.2019.2928245
  25. Venkatramanan, D., John, V.: Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance. IEEE Trans. Ind. Appl. 55(6), 6234-6246 (2019) https://doi.org/10.1109/TIA.2019.2937856
  26. Darroman, Y., Ferre, A.: 42-V/3-V Watkins-Johnson converter for automotive use. IEEE Trans. Power Electron. 21(3), 592-602 (2006) https://doi.org/10.1109/TPEL.2006.872381
  27. Grant, D.A., Darroman, Y.: Inverse Watkins-Johnson converter - analysis reveals its merits. Electron. Lett. 39(18), 1342-1343 (2003) https://doi.org/10.1049/el:20030860
  28. Mishra, S., Adda, R., Joshi, A.: Inverse Watkins-Johnson topology-based inverter. IEEE Trans. Power Electron. 27(3), 1066-1070 (2012) https://doi.org/10.1109/TPEL.2011.2177278
  29. Choung, S. H., Kwasinski, A.: Multiple-input modified inverse Watkins-Johnson converter without coupled inductors. Proc. IEEE Energy Conversion Congress and Exposition, 12-16 (2010)
  30. Grant, D.A., Darroman, Y.: Watkins-Johnson converter completes tapped inductor converter matrix. Electron. Lett. 39(3), 271-272 (2003) https://doi.org/10.1049/el:20030186
  31. Hu, L., Wei, X.: Improved Watkins-Johnson topology-based inverter with dual low-side switch and synchronous control strategy. IEICE Electron. Express 15(7), 1-8 (2018)
  32. Hu, L., Wei, X., Ma, J.: Zhang, J: Single stage high-frequency non-isolated step-up sinusoidal inverter with three ground-side power switches. IEICE Electron. Express 15(11), 1-10 (2018)
  33. Hu, L., Wei, X., Luo, Y., Ma, J.: Synchronous high step-down ratio non-isolated LED constant current driver based on improved Watkins-Johnson topology. IEEE Access 7, 18345-18353 (2019) https://doi.org/10.1109/ACCESS.2019.2897057
  34. Hu, L., Luo, Y.: Active PFC stage based on synchronous inverse Watkins-Johnson topology. IEICE Electron. Express 18(21), 1-5 (2021)
  35. Hu, L.: Watkins-Johnson derivative topology and its application. Ph.D. dissertation of Beijing Jiaotong Univ., Beijing(2019)
  36. Luo, F.L., Ye, H.: Small signal analysis of energy factor and mathematical modeling for power DC-DC converters. IEEE Trans. Power Electron. 22(1), 69-79 (2007) https://doi.org/10.1109/TPEL.2006.886652
  37. Pokharel, M., Ghosh, A., Ho, C.N.: M: Small-signal modelling and design validation of PV-controllers with INC-MPPT using CHIL. IEEE Trans. Energy Convers. 34(1), 361-371 (2019) https://doi.org/10.1109/TEC.2018.2874563
  38. Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics, 2nd edn. Kluwer, New York (2012)
  39. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Power electronics and control techniques for maximum energy harvesting in photovoltaic systems. CRC, Boca Raton (2013)
  40. Hu, L., Wei, X., Zhang, J., Ma, J.: Testing and experimental study on output characteristic curve of photovoltaic cell. Journal of Beijing Jiaotong Univ. 39(2), 122-127 (2015)