Acknowledgement
This work was supported by the National Natural Science Foundation of China (32202907, 42376091, 42276146), the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program (2022LZGC004), the Research Fund for the Taishan Scholar Project of Shandong Province (tspd20210316), and China Agriculture Research System of MOF and MARA (CARS-50).
References
- Blouin, N., Fei, X., Jiang, P., Yarish, C. & Brawley, S. H. 2007. Seeding nets with neutral spores of the red alga Porphyra umbilicalis (L.) Kutzing for use in integrated multitrophic aquaculture (IMTA). Aquaculture 270:77-91. https://doi.org/10.1016/j.aquaculture.2007.03.002
- Chen, G. 1980. Studies on the free conchocelis filament culture and seeding in Porphyra haitanensis. J. Fish. China 4:19-29.
- Chen, N., Tang, L., Guan, X., Chen, R., Cao, M., Mao, Y. & Wang, D. 2019. Thallus sectioning as an efficient monospore release method in Pyropia yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 32:2195-2200. https://doi.org/10.1007/s10811-019-01992-6
- Gui, Y. 1981. The cause and solution of intracellular contents in free-living sporangial filaments become empty of Porphyra haitanensis. Mar. Fish. 3:9-10.
- He, B., Gu, W., Wang, L., Zheng, Z., Shao, Z., Huan, L., Zhang, B., Ma, Y., Niu, J., Xie, X. & Wang, G. 2021a. RNA-seq between asexual archeospores and meiosis-related conchospores in Neopyropia yezoensis using Smart-seq2. J. Phycol. 57:1648-1658. https://doi.org/10.1111/jpy.13197
- He, B., Niu, J., Xie, X. & Wang, G. 2021b. Development of freeliving sporangial filaments regulated by light and culture density in Neopyropia yezoensis. Algal Res. 58:102378.
- He, P. & Yarish, C. 2006. The developmental regulation of mass cultures of free-living conchocelis for commercial net seeding of Porphyra leucosticta from Northeast America. Aquaculture 257:373-381. https://doi.org/10.1016/j.aquaculture.2006.03.017
- Ishitani, M., Nakamura, T., Han, S. Y. & Takabe, T. 1995. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol. Biol. 27:307-315. https://doi.org/10.1007/BF00020185
- Kim, D., Langmead, B. & Salzberg, S. L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12:357-360. https://doi.org/10.1038/nmeth.3317
- Kim, J. K., Yarish, C., Hwang, E. K., Park, M. & Kim, Y. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1-13. https://doi.org/10.4490/algae.2017.32.3.3
- Kitade, Y., Asamizu, E., Fukuda, S., Nakajima, M., Ootsuka, S., Endo, H., Tabata, S. & Saga, N. 2008. Identification of genes preferemtially expressed during asexual sporulation in Porphyra yezoensis gametophytes (Bangiales, Rhodophyta). J. Phycol. 44:113-123. https://doi.org/10.1111/j.1529-8817.2007.00456.x
- Kitakura, S., Adamowski, M., Matsuura, Y., Santuari, L., Kouno, H., Arima, K., Hardtke, C. S., Friml, J., Kakimoto, T. & Tanaka, H. 2017. BEN3/BIG2 ARF GEF is involved in brefeldin A-sensitive trafficking at the trans-Golgi network/early endosome in Arabidopsis thaliana. Plant Cell Physiol. 58:1801-1811. https://doi.org/10.1093/pcp/pcx118
- Li, B. & Dewey, C. N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.
- Li, W.-T., He, M., Wang, J. & Wang, Y.-P. 2013. Zinc finger protein (ZFP) in plants: a review. Plant Omics J. 6:474-480.
- Li, X., Yang, L. & He, P.-M. 2011. Formation and growth of free-living conchosporangia of Porphyra yezoensis: effects of photoperiod, temperature and light intensity. Aquac. Res. 42:1079-1086. https://doi.org/10.1111/j.1365-2109.2010.02691.x
- Livak, K. J. & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
- Lopez-Vivas, J. M., Riosmena-Rodriguez, R., de la Llave, A. A. J.-G., Pacheco-Ruiz, I. & Yarish, C. 2015. Growth and reproductive responses of the conchocelis phase of Pyropia hollenbergii (Bangiales, Rhodophyta) to light and temperature. J. Appl. Phycol. 27:1561-1570. https://doi.org/10.1007/s10811-014-0434-z
- Love, M. I., Huber, W. & Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
- Mizuta, H., Yasui, H. & Saga, N. 2003. A simple method to mass produce monospores in the thallus of Porphyra yezoensis Ueda. J. Appl. Phycol. 15:351-353. https://doi.org/10.1023/A:1025170010916
- Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11:1650-1667. https://doi.org/10.1038/nprot.2016.095
- Provasoli, L. 1958. Nutrition and ecology of protozoa and algae. Annu. Rev. Microbiol. 12:279-308. https://doi.org/10.1146/annurev.mi.12.100158.001431
- Sun, A. & Zeng, C. 1996. Preliminary report on suspension culture of clon of Porphyra yezoensis conchosporangial filaments in the production of conchospores for purple laver aquaculture. Oceanol. Limnol. Sin. 27:667-668.
- Takagi, J. & Uemura, T. 2018. Use of brefeldin A and wortmannin to dissect post-Golgi organelles related to vacuolar transport in Arabidopsis thaliana. Methods Mol. Biol. 1789:155-165. https://doi.org/10.1007/978-1-4939-7856-4_12
- Takahashi, M. & Mikami, K. 2017. Oxidative stress promotes asexual reproduction and apogamy in the red seaweed Pyropia yezoensis. Front. Plant Sci. 8:62.
- Udawat, P., Jha, R. K., Sinha, D., Mishra, A. & Jha, B. 2016. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front. Plant Sci. 7:518.
- Wang, D., Yu, X., Xu, K., Bi, G., Cao, M., Zelzion, E., Fu, C., Sun, P., Liu, Y., Kong, F., Du, G., Tang, X., Yang, R., Wang, J., Tang, L., Wang, L., Zhao, Y., Ge, Y., Zhuang, Y., Mo, Z., Chen, Y., Gao, T., Guan, X., Chen, R., Qu, W., Sun, B., Bhattacharya, D. & Mao, Y. 2020a. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat. Commun. 11:4028.
- Wang, X., He, L., Ma, Y., Huan, L., Wang, Y., Xia, B. & Wang, G. 2020b. Economically important red algae resources along the Chinese coast: history, status, and prospects for their utilization. Algal Res. 46:101817.
- Wi, J., Na, Y., Yang, E., Lee, J.-H., Jeong, W.-J. & Choi, D.-W. 2020. Arabidopsis AtMPV17, a homolog of mice MPV17, enhances osmotic stress tolerance. Physiol. Mol. Biol. Plants 26:1341-1348. https://doi.org/10.1007/s12298-020-00834-x
- Xu, F., Zhang, D.-W., Zhu, F., Tang, H., Lv, X., Cheng, J., Xie, H.-F. & Lin, H.-H. 2012. A novel role for cyanide in the control of cucumber (Cucumis sativus L.) seedlings response to environmental stress. Plant Cell Environ. 35:1983-1997. https://doi.org/10.1111/j.1365-3040.2012.02531.x
- Yang, L. & He, P. 2004. Effect of temperature, light intensity and conchosporangium density on conchospores releasing in Porphyra yezoensis. Mar. Fish. 26:205-209.