DOI QR코드

DOI QR Code

대파 재배지 파좀나방(Acrolepiopsis sapporensis) 발생 현황과 '비티플러스' 처리 효과

Occurrence of the Onion Moth, Acrolepiopsis sapporensis, in the Welsh Onion Farms and its Treatment Using 'BtPlus'

  • 투고 : 2023.06.12
  • 심사 : 2023.11.07
  • 발행 : 2023.12.01

초록

대파(Allium fistulosum) 정식부터 수확기까지 성페로몬을 이용하여 재배지에 발생한 파좀나방(Acrolepiopsis sapporensis)을 모니터링하였다. 이 시기에 발생한 파좀나방은 월동세대 이후 6월 초와 7월 말에 각각 발생 최성기를 보였다. 그러나 발생량은 연도와 재배 환경에 따라 다르게 나타났다. 파좀나방을 효과적으로 방제하기 위한 미생물제제로서 Bacillus thuringiensis 균주를 스크리닝하였고, 이들 가운데 B. thuringiensis kurstaki (BtK)가 선발되었다. 선발된 BtK의 살충력을 높이기 위해 다른 곤충병원세균인 Photorhabdus temperata temperata (Ptt) 세균 배양액 추출물을 추가하였다. 이들 두 세균을 혼합한 '비티플러스'는 BtK 단독 보다 현격하게 높은 살충력을 나타냈다. 이러한 살충력 제고 원인은 Ptt 추출물에 포함된 대사물질에 의해 기인되었다. 이들 대사물질은 파좀나방의 세포성 및 체액성 면역반응을 억제하여 BtK의 살충력을 제고시킨 것으로 나타났다. 이상의 결과는 국내 대파 재배지에서 파좀나방이 지속적으로 발생하며, 이 해충에 의한 경제적 피해를 줄이기 위한 비티플러스의 효과적 방제 가능성을 제시하였다.

The onion moth, Acrolepiopsis sapporensis, was monitored in the farms cultivating the welsh onion, Allium fistulosum, using sex pheromone from transplantation to harvest. Two occurrence peaks were observed at early June and late July after the overwintering population. However, the population sizes were varied among different years and the cultivating environments. To effectively control A. sapporensis with microbial pesticides, different Bacillus thuringiensis strains were screened to select B. thuringiensis kurstaki (BtK). To enhance the insecticidal virulence of BtK, the culture broth of Photorhabdus temperata temperata (Ptt) was added to the BtK. This mixture of two entomopathogenic bacteria was called 'BtPlus', which was superior to BtK alone in the insecticidal virulence. The enhanced virulence was explained by the immunosuppressive activity of the secondary metabolites contained in the Ptt extract. The metabolites inhibited both cellular and humoral immune responses of A. sapporensis, resulting in the enhanced virulence of BtK. These results suggest that A. sapporensis occurs in the welsh onion fields and the resulting economic damage would be effectively prevented by BtPlus application.

키워드

과제정보

본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 작물바이러스 및 병해충대응 산업화 기술개발사업의 지원(321100-3)을 받아 연구되었습니다.

참고문헌

  1. Bisby, F., Roskov, Y., Culham, A., Orrell, T., Nicolson, D., Paglinawan, L., Bailly, N., Appeltans, W., Kirk, P., Bourgoin, T., Baillargeon, G., Ouvrard, D., 2012. Species 2000 & ITIS catalogue of life, 2012 annual checklist. Digital resource at www.catalogueoflife.org/col/ (accessed on 13 November, 2023).
  2. Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. https://doi.org/10.1073/pnas.0604865103
  3. Choi, K.R., 1997. Studies on the development of the stone leek miner, Acrolepiopsis sapporensis Matsumura (Lepidoptera: Acrolepiidae). J. Agric. Sci. Chungnam Natl. Univ. 24, 16-20.
  4. Eom, S., Park, Y., Kim, H., Kim, Y., 2014. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521. https://doi.org/10.4014/jmb.1310.10116
  5. Federici, B.A., Park, H.W., Bideshi, D.K., Wirth, M.C., Johnson, J.J., Sakano, Y., Tang, M., 2007. Developing recombinant bacteria for control of mosquito larvae. J. Am. Mosq. Control Assoc. 23(2 Suppl), 164-175. https://doi.org/10.2987/8756-971X(2007)23[164:DRBFCO]2.0.CO;2
  6. Ferre, J., Real, M.D., Van Rie, J., Jansens, S., Peferoen, M., 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 5119-5123. https://doi.org/10.1073/pnas.88.12.5119
  7. Gaedike, R., 1997. Acrolepiidae. Lepidopterorum catalogus (new series), Fasc. 55. 16 pp. Association for Tropical Lepidoptera and Scientific Publishers, Gainesville, FL.
  8. Gahan, L.J., Pauchet, Y., Vogel, H., Heckel, D.G., 2010. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 6, e1001248.
  9. Hasan, M.A., Ahmed, S., Kim, Y., 2019. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. Insect Biochem. Mol. Biol. 111, 103179.
  10. Hrithik, M.T.H., Kim, Y., 2023. Immune responses of the Asian onion moth, Acrolepiopsis sapporensis, and their genetic factors from RNA-Seq analysis. Arch. Insect Biochem. Physiol. 114, 1-21. https://doi.org/10.1002/arch.22038
  11. Ji, D., Yi, Y., Kim, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
  12. Jung, S., Kim, Y., 2006. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39, 201-209. https://doi.org/10.1016/j.biocontrol.2006.07.002
  13. Kang, S., Han, S., Kim, Y., 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7, 331-337. https://doi.org/10.1016/S1226-8615(08)60235-6
  14. Kang, S., Han, S., Kim, Y., 2005. Identification and pathogenic characteristics of two Korean isolates of Heterohabditis megidis. J. Asia Pac. Entomol. 8, 411-418. https://doi.org/10.1016/S1226-8615(08)60264-2
  15. Keller, B., Langenbruch, G.A., 1993. Control of coleopteran pests by Bacillus thuringiensis, pp. 167-202. in: Entwistle, P.E., Cory, J.S., Bailey, M.J., Higgs, S. (Eds.), Bacillus thuringiensis, an environmental biopesticide: theory and practice, Agricultural Publishing House, Beijing.
  16. Kim, E., Jung, S., Park, Y., Kim, K., Kim, Y., 2015. A novel formulation of Bacillus thuringiensis for the control of brassica leaf beetle, Phaedon brassicae. J. Econ. Entomol. 108, 2556-2565. https://doi.org/10.1093/jee/tov245
  17. Kim, M., Kim, T., Lim, J., Cho, S., 2013. New record of the leek moth, Acrolepiopsis nagaimo (Lepidoptera: Acrolepiidae) from Korea. Korean J. Appl. Entomol. 52, 1-4. https://doi.org/10.5656/KSAE.2012.10.0.041
  18. Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264. https://doi.org/10.1016/j.jip.2005.05.001
  19. Kim, Y., Stanley, D., 2021. Eicosanoid signaling in insect immunology: new genes and unresolved issues. Genes 12, 211.
  20. Kim, Y., Stanley, D., Ahmed, S., An, C., 2018. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143. https://doi.org/10.1016/j.dci.2017.12.005
  21. KOSTAT. 2020. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0291&conn_path=I3 (accessed on 13 November, 2023).
  22. Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309. https://doi.org/10.1016/S0965-1748(02)00092-9
  23. Loeb, M.J., Martin, P.A., Hakim, R.S., Goto, S., Takeda, M., 2001. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol. 47, 599-606. https://doi.org/10.1016/S0022-1910(00)00150-5
  24. Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhust, R., Schmidt, O., 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Heliocoverpa armigera larvae? Insect Biochem. Mol. Biol. 35, 729-739. https://doi.org/10.1016/j.ibmb.2005.02.011
  25. Ohtomo, R., Chiba, T., 2001. Ecological notes on diapause and overwintering of the Allium leafminer, Acrolepiopsis sapporensis (Matsumura) (Lepidoptera: Plutellidae) in northern Japan. Jpn. J. Appl. Entomol. Ecol. 45, 123-128. https://doi.org/10.1303/jjaez.2001.123
  26. Pardo-Lopez, L., Soberon, M., Bravo, A., 2013. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3-22. https://doi.org/10.1111/j.1574-6976.2012.00341.x
  27. Park, H., Kim, K., Park, C., Choi, Y., Lee, S., 2012. Injury characteristics of Allium leafminer, Acrolepiopsis sapporensis (Lepidoptera: Acrolepiidae) in welsh onion and damage assessment according to larval density levels during summer. Korea J. Appl. Entomol. 51, 383-388. https://doi.org/10.5656/KSAE.2012.09.0.054
  28. Park, Y., Jung, J., Kim, Y., 2016. A mixture of Bacillus thuringiensis subsp. israelensis with Xenorhabdus nematophila-cultured broth enhances toxicity against mosquitoes Aedes albopictus and Culex pipiens pallens. J. Econ. Entomol. 109, 1086-1093. https://doi.org/10.1093/jee/tow063
  29. Park, Y., Lee, J., Jeong, J., Min, J., Chang, W., Kim, G., 2019. Occurrence and susceptibility to several insecticides of Thrips tabaci and Acrolepiopsis sapporensis on northern-type garlic fields in Chungbuk province. Korean J. Appl. Entomol. 58, 251-258.
  30. Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699. https://doi.org/10.1073/pnas.0306669101
  31. SAS Institute, Inc., 1989. SAS/STAT user's guide. SAS Institute, Inc., Cary, NC.
  32. Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12
  33. Shao, Z., Cui, Y., Liu, X., Yi, H., Ji, J., Yu, Z., 1998. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J. Invertebr. Pathol. 72, 73-81. https://doi.org/10.1006/jipa.1998.4757
  34. Shi, Y.M., Hirschmann, M., Shi, Y.N., Ahmed, S., Abebew, D., Tobias, N.J., Grun, P., Crames, J.J., Poschel, L., Kuttenlochner, W., Richter, C., Herrmann, J., Muller, R., Thanwisai, A., Pidot, S.J., Stinear, T.P., Groll, M., Kim, Y., Bode, H.B., 2022. Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nature Chem. 14, 1-21. https://doi.org/10.1038/s41557-021-00859-z
  35. Shimizu, N., Kuwahara, Y., 2009. Female sex pheromone of a Japanese population of allium leafminer, Acrolepiopsis sapporensis (Lepidoptera: Acrolepiidae). J. Pestic. Sci. 34, 181-183. https://doi.org/10.1584/jpestics.G09-15
  36. van Rie, J., McGaughey, W.H., Johnson, D.E., Barnett, B.D., Van Mellaert, H., 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72-74. https://doi.org/10.1126/science.2294593
  37. Wright, D.J., Iqbal, M., Granero, F., Ferre, J., 1997. Change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. Appl. Environ. Microbiol. 63, 1814-1819. https://doi.org/10.1128/aem.63.5.1814-1819.1997
  38. Yang, C.Y., Cho, J.R., Kang, T.J., Jeon, H.Y., 2008. Identification and field testing of sex pheromone components of a Korean population of the allium leafminer, Acrolepiopsis sapporensis. Entomol. Exp. Appl. 129, 216-222. https://doi.org/10.1111/j.1570-7458.2008.00766.x