DOI QR코드

DOI QR Code

Effect of the Sag Height of a PDMS Microlens on the Acceptance Angle of an Artificial Compound Eye

겹눈 모사 구조체에서 마이크로 렌즈의 높이가 빛의 수용각에 미치는 영향 연구

  • Jihyun, Jung (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Mihee, Park (Educational Research Center for the Personalized Healthcare based on Cogno-Mechatronics, Pusan National University) ;
  • Hyerin, Song (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kyujung, Kim (Department of Optics and Mechatronics Engineering, Pusan National University)
  • 정지현 (부산대학교 인지메카트로닉스공학과) ;
  • 박미희 (부산대학교 인지메카트로닉스 기반 개인맞춤형 헬스케어 교육 연구단) ;
  • 송혜린 (부산대학교 인지메카트로닉스공학과) ;
  • 김규정 (부산대학교 광메카트로닉스공학과)
  • Received : 2023.01.03
  • Accepted : 2023.01.17
  • Published : 2023.02.25

Abstract

We have investigated the acceptance angle and imaging performance of a curved artificial compound eye (ACE), depending on the sag height of the microlens array to maximize its sensitivity to light. When the h/r values increased from 0.22 to 0.37, the acceptance angle of the curved ACE was expanded from 28.70° to 49.02°, which is an enhancement by 70.8%. With the designed optical system, it was demonstrated that a microlens located at the 23rd position from the center of the main lens could still focus an incident beam tilted at 56.35°, so that the letter F was clearly observed.

입사하는 빛에 대한 수용각이 큰 인공 겹눈 구조를 제작하기 위해 마이크로 렌즈 어레이의 높이에 따라 곡면형 겹눈 구조체가 갖는 수용각과 이미징 특성을 분석하였다. 마이크로 렌즈의 반지름에 대한 높이인 h/r값을 조절함으로써 보다 큰 입사각을 갖는 빔이 마이크로 렌즈 어레이로 들어올 때도 여전히 빔을 포커싱하고 이미지를 맺을 수 있는 렌즈의 구조를 확인하였다. h/r값이 0.22에서 0.37로 증가할 때 겹눈 구조체의 수용각은 28.70°에서 49.02°로 증가하여 70.8%의 증가폭을 얻어낼 수 있었다. 뿐만 아니라 글자 F를 이미징한 결과, h/r값이 0.37일 때 메인 렌즈의 중심으로부터 23번째에 위치한 마이크로 렌즈에서도 글자가 선명하게 관찰되어 56.35°의 입사각을 갖는 빔에 대해서도 마이크로 렌즈 어레이가 이미지를 맺을 수 있음을 확인하였다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음

References

  1. B. Schoenemann, H. Parnaste, and E. N. K. Clarkson, "Structure and function of a compound eye, more than half a billion years old," PNAS 114, 13489-13494 (2017). https://doi.org/10.1073/pnas.1716824114
  2. D.-E. Nilsson and A. Kelber, "A functional analysis of compound eye evolution," Arthropod Struct. Dev. 36, 373-385 (2007). https://doi.org/10.1016/j.asd.2007.07.003
  3. T. H. Oakley, "On homology of arthropod compound eyes," Intergr. Comp. Biol. 43, 522-530 (2003). https://doi.org/10.1093/icb/43.4.522
  4. G. Lian, Y. Liu, K. Tao, H. Xing, R. Huang, M. Chi, W. Zhou, and Y. Wu, "Fabrication and characterization of curved compound eyes based on multifocal microlenses," Micromachines 11, 854 (2020).
  5. W.-K. Kuo, G.-F. Kuo, S.-Y. Lin, and H.-H. Yu, "Fabrication and characterization of artificial miniaturized insect compound eyes for imaging," Bioinspir. Biomim. 10, 056010 (2015).
  6. M. Kaya, I. Sargin, I. Al-jaf, S. Erdogan, and G. Arslan, "Characteristics of corneal lens chitin in dragonfly compound eyes," Int. J. Biol. Macromol. 89, 54-61 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.056
  7. J. Luo, Y. Guo, and X. Wang, "Rapid fabrication of curved microlens array using the 3D printing mold," Optik 156, 556-563 (2018). https://doi.org/10.1016/j.ijleo.2017.11.197
  8. K. Hamanaka and H. Koshi, "An artificial compound eye using a microlens array and its application to scale-invariant processing," Opt. Rev. 3, 264-268 (1996). https://doi.org/10.1007/s10043-996-0264-6
  9. M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, "A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number," RSC Adv. 5, 35311-35316 (2015). https://doi.org/10.1039/C5RA00957J
  10. S. G. Heo, D. Jang, H. -J. Koo, and H. Yoon, "Large-area fabrication of microlens arrays by using self-pinning effects during the thermal reflow process," Opt. Express 27, 3439-3447 (2019). https://doi.org/10.1364/OE.27.003439
  11. T. Gu, L. Wang, M. Mao, J. Han, R. Li, Y. Zhang, B. Lei, W. Jiang, and H. Liu, "Bilayer liquid-filled compound microlens arrays: A way to compensate aberration," J. Appl. Phys. 128, 163101 (2020).
  12. J. Tanida, R. Shogenji, Y. Kitamura, K. Yamada, M. Miyamoto, and S. Miyatake, "Color imaging with an integrated compound imaging system," Opt. Express 11, 2109-2117 (2003). https://doi.org/10.1364/OE.11.002109
  13. J. Duparre, P. Dannberg, P. Schreiber, A. Brauer, and A. Tunnermann, "Thin compound-eye camera," Appl. Opt. 44, 2949-2956 (2005). https://doi.org/10.1364/AO.44.002949
  14. H. Liu, F. Chen, Q. Yang, P. Qu, S. He, X. Wang, J. Si, and X. Wang, "Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections," Appl. Phys. Lett. 100, 133701 (2012).
  15. P. Zhou, H. Yu, Y. Zhong, W. Zou, Z. Wang, and L. Liu, "Fabrication of waterproof artificial compound eyes with variable field of view based on the bioinspiration from natural hierarchical micro-nanostructures," Nano-Micro Lett. 12, 166 (2020).
  16. S. Huang, M. Li, L. Shen, J. Qiu, and Y. Zhou, "Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-molded hierarchic microstructures," Opt. Commun. 393, 213-218 (2017). https://doi.org/10.1016/j.optcom.2017.02.040
  17. D. Wu, J.-N. Wang, L.-G. Niu, X.-L. Zhang, S.-Z. Wu, Q.-D. Chen, L.-P. Lee, and H. B. Sun, "Bioinspired fabrication of high-quality 3D artificial compound eyes by Voxel-modulation femtosecond laser writing for distortion-free wide-field-ofview imaging," Adv. Opt. Mater. 2, 751-758 (2014). https://doi.org/10.1002/adom.201400175
  18. J. Li, W. Wang, X. Mei, A. Pan, X. Sun, B. Liu, and J. Cui, "Artificial compound eyes prepared by a combination of airassisted deformation, modified laser swelling, and controlled crystal growth," ACS Nano 13, 114-124 (2019). https://doi.org/10.1021/acsnano.8b04047
  19. P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997). https://doi.org/10.1088/0963-9659/6/6/004
  20. Q. Zhang, M. Schambach, S. Schlisske, Q. Jin, A. Mertens, C. Rainer, G. Hernandez-Sosa, M. Heizmann, and U. Lemmer, "Fabrication of microlens arrays with high quality and high fill factor by inkjet printing," Adv. Opt. Mater. 10, 2200677 (2022).
  21. K. Nagahashi, Y. Teramura, and M. Takai, "Stable surface coating of silicon elastomer with phosphorylcholine and organosilane copolymer with cross-linking for repelling proteins," Colloids Surf. B: Biointerfaces 134, 384-391 (2015). https://doi.org/10.1016/j.colsurfb.2015.07.040
  22. M. Zhang, J. Wu, L. Wang, K. Xiao, and W. Wen, "A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips," Lab Chip 10, 1199-1203 (2010). https://doi.org/10.1039/b923101c
  23. Z. Deng, F. Chen. Q. Yang, H. Bian, G. Du, J. Yang, C. Shan, and X. Hou, "Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging," Adv. Funct. Mater. 26, 1995-2001 (2016). https://doi.org/10.1002/adfm.201504941
  24. Y. Zhai, J. Niu, J. Liu, and B. Yang, "High numerical aperture imaging systems formed by integrating bionic artificial compound eyes on a CMOS sensor," Opt. Mater. Express 11, 1824-1834 (2021). https://doi.org/10.1364/OME.427623
  25. J. Li, W. Wang. X. Mei, D. Hou, A. Pan, B. Liu, and J. Cui, "Fabrication of artificial compound eye with controllable field of view and improved imaging," ACS Appl. Mater. Interfaces 12, 8870-8878 (2020). https://doi.org/10.1021/acsami.9b20740
  26. D. Keum, H. Jung, and K.-H. Jeong, "Planar emulation of natural compound eyes," Small 8, 2169-2173 (2012). https://doi.org/10.1002/smll.201200107