DOI QR코드

DOI QR Code

Intrinsic Properties and Potential Wide Uses of Polyrotaxane Derivatives in Relation to Slide Ring Cross-Links Architectures

  • Juho Yun (Chemical Materials R&D Department, Korea Automotive Technology Institute) ;
  • Namil Kim (Department of Chemical Engineering, Hannam University)
  • Received : 2023.12.11
  • Accepted : 2023.12.26
  • Published : 2023.12.31

Abstract

Owing to their unique properties originating from slidable cross-links, polyrotaxane derivatives have potential applications as polymer electrolytes for lithium-ion batteries, lightweight polymer alloys for vehicular bodies and their glazing, elastic rubbers for tires, hydrogels for drug delivery. This article reviews the structures of polyrotaxanes comprising cyclic molecules threaded by a linear axle polymer. Next, the versatile characteristics of polyrotaxane gels, elastomers, and polymer alloys such as toughness, elasticity, and softness are discussed in relation to their supramolecular architectures. Finally, the mechanical behavior of solid ring cross-links are compared with that of conventional fixed cross-links for better understanding.

Keywords

Acknowledgement

This work was funded by 2023 Hannam University Research Fund.

References

  1. N. Okumura and K. Ito, "The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-Links", Adv. Mater., 13, 485 (2001).
  2. J. Araki, C. Zhao, and K. Ito, "Efficient Production of Polyrotaxane from α-Cyclodextrin and Poly(ethylene glycol)", Macromolecules, 38, 7524 (2005).
  3. T. Ooya, M. Eguchi, and N. Yui, "Supramolecular Design for Multivalent Interaction:Maltose Mobility along Polyrotaxane Enhanced Binding with Concanavalin A", J. Am. Chem. Soc., 125, 13016 (2003).
  4. G. Fleury, C. Brochon, G. Schlatter, A. Lapp, and G. Hadziioannou, "Synthesis and Characterization of High Molecular Weight Polyrotaxanes: Towards the Control over a Wide Range of Threaded α-Cyclodextrins", Soft Matter, 1, 378 (2005).
  5. L. F. Hart, J. E. Hertzog, P. M. Rauscher, B. W. Rawe, M. M. Tranquilli, and S. J. Rowan, "Material Properties and Applications of Mechanically Interlocked Polymers", Nat. Rev. Mater., 6, 508 (2021).
  6. A. K. Rajendan, Y. Arisaka, N. Yui, and S. Iseki, "Polyrotaxanes as Emerging Biomaterials for Tissue Engineering Applications: a Brief Review", Inflamm. Regen., 40, 27 (2020).
  7. T. Takata, "Polyrotaxane and Polyrotaxane Network: Supramolecular Architectures Based on the Concept of Dynamic Covalent Bond Chemistry", Polym. J., 38, 1 (2006).
  8. A. Harada, J. Li, and M. Kamachi, "Preparation and Characterization of a Polyrotaxane Consisting of Monodisperse Poly(ethylene glycol) and α-Cyclodextrins", J. Am. Chem. Soc., 116, 3192 (1994).
  9. G. Crini, "Review: A History of Cyclodextrins", Chem. Rev., 114, 10940 (2014).
  10. Z. Li, M. Wang, F. Wang, Z. Gu, G. Du, J. Wu, and J. Chen, "Gamma-Cyclodextrin: a Review on Enzymatic Production and Applications", Appl. Microbiol. Biotechnol., 77, 245 (2007).
  11. Y. An, F. J. Solis, and H. Jiang, "A Thermodynamic Model of Physical Gels", J. Mech. Phys. Solids, 58, 2083 (2010).
  12. C. Liu, H. Kadono, K. Mayumi, K. Kato, H. Yokoyama, and K. Ito, "Unusual Fracture Behavior of Slide-Ring Gels with Movable Cross-Links" ACS Macro Lett., 6, 1409 (2017).
  13. L. Jiang, C. Liu, K. Mayumi, K. Kato, H. Yokoyama, and K. Ito, "Highly Stretchable and Instantly Recoverable SlideRing Gels Consisting of Enzymatically Synthesized Polyrotaxane with Low Host Coverage", Chem. Mater., 30, 5013 (2018).
  14. Y. Kobayashi, Y. Zheng, Y. Takashima, H. Yamaguchi, and A. Harada, "Physical and Adhesion Properties of Supramolecular Hydrogels Cross-linked by Movable Cross-linking Molecule and Host-Guest Interactions", Chem. Lett., 47, 1387 (2018).
  15. M. Nakahata, S. Mori, Y. Takashima, H. Yamaguchi, and A. Harada, "Self-Healing Materials Formed by Cross-Linked Polyrotaxanes with Reversible Bonds", Chem., 1, 766 (2016).
  16. Y. He, P. Fu, X. Shen, and H. Gao, "Cyclodextrin-Based Aggregates and Characterization by Microscopy", Micron, 39, 495 (2008).
  17. J. Araki, T. Kataoka, and K. Ito, "Preparation of a "Sliding Graft Copolymer", an Organic Solvent-Soluble Polyrotaxane Containing Mobile Side Chains, and Its Application for a Crosslinked Elastomeric Supramolecular Film", Soft Matter, 4, 245 (2008).
  18. M. Inutsuka, K. Inoue, Y. Hayashi, A. Inomata, Y. Sakai, H. Yokoyama, and K. Ito, "Highly Dielectric and Flexible Polyrotaxane Elastomer by Introduction of Cyano Groups", Polymer, 59, 10 (2015).
  19. K. Minato, K. Mayumi, R. Maeda, K. Kato, H. Yokoyama, and K. Ito, "Mechanical Properties of Supramolecular Elastomers Prepared from Polymer-Grafted Polyrotaxane", Polymer, 128, 386 (2017).
  20. N. Inhohara, "Resins and Chemical Business", Toray IR Day Project AP-G 2022 (2020).
  21. A. Ishigami, K. Watanabe, T. Kurose, and H. Ito, "Physical and Morphological Properties of Tough and Transparent PMMA-Based Blends Modified with Polyrotaxane", Polymers, 12, 1790 (2020).