DOI QR코드

DOI QR Code

고연신 섬유 제작을 위한 고온 챔버의 열 분포 및 유동 해석

Heat Distribution and Flow Analysis of High Temperature Chamber for High-stretch Fiber Production

  • 여동현 (다이텍연구원 섬유가상공학연구센터) ;
  • 윤현성 (다이텍연구원 섬유가상공학연구센터) ;
  • 유성훈 (다이텍연구원 섬유가상공학연구센터) ;
  • 이준희 (다이텍연구원 섬유가상공학연구센터) ;
  • 박병수 (일진에이테크(주)) ;
  • 성정훈 (태광산업(주)) ;
  • 심지현 (다이텍연구원 섬유가상공학연구센터)
  • Dong-Hyun Yeo (Textile Virtual Engineering Research Center, DYETEC Institute) ;
  • Hyun-Sung Yoon (Textile Virtual Engineering Research Center, DYETEC Institute) ;
  • Seong-Hun Yu (Textile Virtual Engineering Research Center, DYETEC Institute) ;
  • Jun-Hee Lee (Textile Virtual Engineering Research Center, DYETEC Institute) ;
  • Byung-Soo Park (ILJIN A-tech Industrial Co., Ltd.) ;
  • Jung-Hoon Sung (TAEKWANG Industrial Co., Ltd.) ;
  • Jee-Hyun Sim (Textile Virtual Engineering Research Center, DYETEC Institute)
  • 투고 : 2023.11.22
  • 심사 : 2023.12.07
  • 발행 : 2023.12.31

초록

Aramid fiber has superior tensile strength compared to existing organic fibers, so it is used in tire cords and aerospace fields. Because copolymerized aramid uses an organic solvent in the production process, it has great advantages in terms of process safety and manufacturing environment stability compared to the existing production process using sulfuric acid as a solvent. However, in the case of copolymerized aramid, a stretching rate 8 to 12 times higher than the stretching process is required for high mechanical properties. In order to stretch 8 to 12 times, a high temperature of over 400 to 600 degrees is required. CAE is utilized to optimize the thermal stability and flow of the ultra-high temperature stretching process. For high stretching of 8 to 12 times, a three-stage stretching chamber with a temperature of 500 ℃ or higher is used. Thermal analysis, structural analysis, and flow analysis were performed to maintain the thermal and structural stability inside the high temperature chamber above 500 ℃ and the flow stability of hot air. Through heat distribution and flow analysis, various problems that can occur in the stretching process are identified, and various stretching process types and process conditions are proposed to prevent them. Based on the proposed gap and air heater conditions, a high temperature stretching process of over 500 degrees can be produced and used to produce actual organic fibers.

키워드

과제정보

본 연구는 산업통상자원부 소재부품기술개발사업의 과제번호 20015646의 연구비 지원으로 수행되었습니다.

참고문헌

  1. K. E. Perepelkin, I. V. Andreeva, E. A. Pakshver, and I. Y. Morgoeva, "Thermal Characteristics of Para-aramid Fibres", Fibre Chem., 2003, 35, 265-269. https://doi.org/10.1023/B:FICH.0000003476.55891.26
  2. D.-H. Yeo, J.-H. Lee, J.-H. Lee, S.-H. Yu, Y.-T. Park, J.-H. Seong, and J.-H. Shim, "A Study on Air-wet Spinneret Flow Analysis According to the Viscosity of Copolymerized Aramid Polymer", J. Korean Soc. Dyeing and Proc., 2022, 34, 27-37.
  3. M.-J. Yeo, Y.-G. Jung, N.-D. Gu, C.-S. Kang, and D.-H. Baik, "Synthesis and Characterization of Aramid Copolymer Incorporating Cyanogenamide", Text. Sci. Eng., 2014, 51, 134-139. https://doi.org/10.12772/TSE.2014.51.134
  4. J.-W. Choi, M.-H. Ji, M.-H. Lee, J.-S. Lee, and D.-H. Baik, "Relationship Between Structure and Properties of Para-Aramid Fibers under Heat Treatment", Text. Sci. Eng., 2010, 47, 15-21.
  5. B. L. Deopura and N. V. Padaki, "Synthetic Textile Fibres: Polyamide, Polyester and Aramid Fibres", Textiles and Fashion, 2015, 97-114.
  6. J. Zhao, "Effect of Surface Treatment on the Structure and Properties of Para-aramid Fibers by Phosphoric Acid", Fiber. Polym., 2013, 14, 59-64. https://doi.org/10.1007/s12221-013-0059-x
  7. D. Tanner, J. A. Fitzgerald, and B. R. Phillips, "The Kevlar story-An advanced materials case study", Angew. Chem. Int. Ed. Engl., 1989, 28, 649-654. https://doi.org/10.1002/anie.198906491
  8. H. Zhao, M. Zhang, S. Zhang, and J. Lu, "Influence of Fiber Characteristics and Manufacturing Process on the Structure and Properties of Aramid Paper", Polym. Plast. Technol. Eng., 2012, 51, 134-139. https://doi.org/10.1080/03602559.2011.618161
  9. B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu, and X. Ding, "Fabrication, Applications, and Prospects of Aramid Nanofiber", Adv. Funct. Mater., 2020, 30, 2000186.
  10. L. Yao, K. Kim, and J. Kim, "Fabrication of Meta-aramid Fibrid by Precipitation", Fiber. Polym., 2012, 13, 277-281. https://doi.org/10.1007/s12221-012-0277-7
  11. L. Liu, Y. D. Huang, Z. Q. Zhang, and X. B. Yang, "Effect of Ultrasound on Wettability between Aramid Fibers and Epoxy Resin", J. Appl. Polym. Sci., 2006, 99, 3172-3177. https://doi.org/10.1002/app.22859
  12. E. Jeong, B. H. Lee, S. J. Doh, I. J. Park, and Y. S. Lee, "Multifunctional Surface Modification of an Aramid Fabric via Direct Fluorination", J. Fluor. Chem., 2012, 141, 69-75. https://doi.org/10.1016/j.jfluchem.2012.06.010
  13. E. A. Flores-Johnson, J. G. Carrillo, R. A. Gamboa, and L. Shen, "Experimental and Numerical Study of Plain-woven Aramid Fabric", Advanced Materials Research, 2014, 856, 74-78. https://doi.org/10.4028/www.scientific.net/AMR.856.74
  14. E. Jeong, B. H. Lee, S. J. Doh, I. J. Park, and Y. S. Lee, "Multifunctional Surface Modification of an Aramid Fabric via Direct Fluorination", J. Fluor. Chem., 2012, 141, 69-75. https://doi.org/10.1016/j.jfluchem.2012.06.010
  15. Y. S. Chen, K. H. Chien, T. C. Hung, C. C. Wang, Y. M. Ferng, and B. S. Pei, "Numerical Simulation of a Heat Sink Embedded with a Vapor Chamber and Calculation of Effective Thermal Conductivity of a Vapor Chamber", Appl. Therm. Eng., 2009, 29, 2655-2664. https://doi.org/10.1016/j.applthermaleng.2008.12.009
  16. K. T. Ooi and J. Zhu, "Convective Heat Transfer in a Scroll Compressor Chamber: a 2-D Simulation", Int. J. Therm. Sci., 2004, 43, 677-688. https://doi.org/10.1016/j.ijthermalsci.2003.11.005
  17. J. H. Hong, M. K. Ku, Y. Ahn, H. J. Kim, and H. Kim, "Air-gap Spinning of Cellulose/ionic Liquid Solution and Its Characterization", Fiber. Polym., 2013, 14, 2015-2019. https://doi.org/10.1007/s12221-013-2015-1
  18. J. Gao, X. Yang, and L. Huang, "Numerical Prediction of Mechanical Properties of Rubber Composites Reinforced by Aramid Fiber under Large Deformation", Compos. Struct., 2018, 201, 29-37. https://doi.org/10.1016/j.compstruct.2018.05.132
  19. G. Wu, Y. Luo, P. Bai, H. Wang, R. Cai, Y. Tang, X. Chen, and G. Zhou, "Modeling and Experimental Analysis of an Internally-cooled Vapor Chamber", Energy Conversion and Management, 2021, 235, 114017.
  20. Z. Ming, L. Zhongliang, and M. Guoyuan, "The Experimental and Numerical Investigation of a Grooved Vapor Chamber", Appl. Therm. Eng., 2009, 29, 422-430. https://doi.org/10.1016/j.applthermaleng.2008.03.030
  21. W. Zima, M. Nowak-Oclon, and P. Oclon. "Simulation of Fluid Heating in Combustion Chamber Waterwalls of Boilers for Supercritical Steam Parameters", Energy, 2015, 92, 117-127. https://doi.org/10.1016/j.energy.2015.02.111
  22. M. Wang, W. Cui, and Y. Hou, "Thermal Spreading Resistance of Grooved Vapor Chamber Heat Spreader", Appl. Therm. Eng., 2019, 153, 361-368. https://doi.org/10.1016/j.applthermaleng.2019.03.025