DOI QR코드

DOI QR Code

Research Trends in Fiber-Type Transistors Using Organic Semiconductors

유기반도체를 이용한 섬유형 트랜지스터 연구 동향

  • Youngnan Kim (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Soohwan Lim (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Donggeun Lee (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Wi Hyoung Lee (Department of Organic and Nano System Engineering, Konkuk University)
  • 김영난 (건국대학교 유기나노시스템공학과) ;
  • 임수환 (건국대학교 유기나노시스템공학과) ;
  • 이동근 (건국대학교 유기나노시스템공학과) ;
  • 이위형 (건국대학교 유기나노시스템공학과)
  • Received : 2023.08.09
  • Accepted : 2023.10.10
  • Published : 2023.12.31

Abstract

In this paper, research trends in fiber-type organic field-effect transistors were comprehensively reviewed. We introduced the results of fabricating fiber-type organic semiconductors based on their molecular structure and processing method. Additionally, we present various fiber-type organic thin-film transistors utilizing organic semiconductors. We provide a multifaceted analysis of manufacturing approaches for fiber-type organic thin-film transistors, based on representative research results from field-effect and junction electrochemical transistors. Lastly, we review recent research results on the utilization of fiber-type organic thin-film transistors in chemical sensors and the other types of fiber-type organic electronic devices. Our paper aims to contribute to the practical utilization of fiber-type organic thin-film transistors in various wearable electronic devices.

Keywords

Acknowledgement

이 논문은 2020년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임 (P0012770, 2020년 산업혁신인재성장지원사업). 이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2023-00208902).

References

  1. J. E. Anthony, J. S. Brooks, D. L. Eaton, and S. R. Parkin, "Functionalized Pentacene: Improved Electronic Properties from Control of Solid-state Order", J. Am. Chem. Soc., 2001, 123, 9482-9483.  https://doi.org/10.1021/ja0162459
  2. M. M. Payne, S. R. Parkin, J. E. Anthony, C.-C. Kuo, and T. N. Jackson, "Organic Field-Effect Transistors from Solution-Deposited Functionalized Acenes with Mobilities as High as 1 cm2/V.s", J. Am. Chem. Soc., 2005, 127, 4986-4987.  https://doi.org/10.1021/ja042353u
  3. J. H. Lee, J. H. Chun, H.-J. Chung, and W. H. Lee, "Microstructural Control of Soluble Acene Crystals for Field-Effect Transistor Gas Sensors", Nanomaterials, 2022, 12, 2564. 
  4. B. Kang, W. H. Lee, and K. Cho, "Recent Advances in Organic Transistor Printing Processes", ACS Appl. Mater. Interfaces, 2013, 5, 2302-2315.  https://doi.org/10.1021/am302796z
  5. J. A. Lim, H. S. Lee, W. H. Lee, and K. Cho, "Control of the Morphology and Structural Development of Solution- processed Functionalized Acenes for High-performance Organic Transistors", Adv. Funct. Mater., 2009, 19, 1515-1525.  https://doi.org/10.1002/adfm.200801135
  6. W. H. Lee, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, Y. D. Park, Y. H. Kim, J. I. Han, and K. Cho, "Solution-processable Pentacene Microcrystal Arrays for High Performance Organic Field-effect Transistors", Appl. Phys. Lett., 2007, 90, 132106. 
  7. H. S. Kim, J. H. Park, W. H. Lee, H. H. Kim, and Y. D. Park, "Tailoring the Crystallinity of Solution-processed 6, 13-bis (triisopropylsilylethynyl) Pentacene Via Controlled Solidification", Soft Matter, 2019, 15, 7369-7373.  https://doi.org/10.1039/C9SM01159E
  8. L.-H. Chou, Y. Na, C.-H. Park, M. S. Park, I. Osaka, F. S. Kim, and C.-L. Liu, "Semiconducting Small Molecule/polymer Blends for Organic Transistors", Polymer, 2020, 191, 122208. 
  9. W. H. Lee and Y. D. Park, "Organic Semiconductor/insulator Polymer Blends for High-performance Organic Transistors", Polymers, 2014, 6, 1057-1073.  https://doi.org/10.3390/polym6041057
  10. Y.-J. Kwon, Y. D. Park, and W. H. Lee, "Inkjet-printed Organic Transistors Based on Organic Semiconductor/insulating Polymer Blends", Materials, 2016, 9, 650. 
  11. J. H. Lee, H. H. Choi, Y. D. Park, J. E. Anthony, J. A. Lim, J. Cho, D. S. Chung, J. Hwang, H. W. Jang, and K. Cho, "1D Versus 2D Growth of Soluble Acene Crystals from Soluble Acene/Polymer Blends Governed by a Residual Solvent Reservoir in a Phase-Separated Polymer Matrix", Adv. Funct. Mater., 2018, 28, 1802875. 
  12. J. H. Lee, J. Lyu, M. Kim, H. Ahn, S. Lim, H. W. Jang, H. J. Chung, J. H. Lee, J. Koo, and W. H. Lee, "Quantitative Determination of Charge Transport Interface at Vertically Phase Separated Soluble Acene/Polymer Blends", Adv. Funct. Mater., 2023, 2215221. 
  13. J. M. Mativetsky, E. Orgiu, I. Lieberwirth, W. Pisula, and P. Samori, "Charge Transport over Multiple Length Scales in Supramolecular Fiber Transistors: Single Fiber Versus Ensemble Performance", Adv. Mater., 2014, 26, 430-435.  https://doi.org/10.1002/adma.201303419
  14. J. A. Lim, F. Liu, S. Ferdous, M. Muthukumar, and A. L. Briseno, "Polymer Semiconductor Crystals", Mater. Today, 2010, 13, 14-24.  https://doi.org/10.1016/S1369-7021(10)70080-8
  15. Y. J. Jeong, H. Lee, B.-S. Lee, S. Park, H. T. Yudistira, C.-L. Choong, J.-J. Park, C. E. Park, and D. Byun, "Directly Drawn Poly(3-hexylthiophene) Field-effect Transistors by Electrohydrodynamic Jet Printing: Improving Performance with Surface Modification", ACS Appl. Mater. Interfaces, 2014, 6, 10736-10743.  https://doi.org/10.1021/am502595a
  16. H. M. Kim, H. W. Kang, D. K. Hwang, H. S. Lim, B. K. Ju, and J. A. Lim, "Metal-Insulator-Semiconductor Coaxial Microfibers Based on Self-Organization of Organic Semiconductor: Polymer Blend for Weavable, Fibriform Organic Field-Effect Transistors", Adv. Funct. Mater., 2016, 26, 2706-2714.  https://doi.org/10.1002/adfm.201504972
  17. M. Hamedi, R. Forchheimer, and O. Inganas, "Towards Woven Logic from Organic Electronic Fibres", Nat. Mater., 2007, 6, 357-362.  https://doi.org/10.1038/nmat1884
  18. C. Reese, M. Roberts, M.-M. Ling, and Z. Bao, "Organic Thin Film Transistors", Mater. Today, 2004, 7, 20-27.  https://doi.org/10.1016/S1369-7021(04)00398-0
  19. H. Zhang, Z. Wang, Z. Wang, B. He, M. Chen, M. Qi, Y. Liu, J. Xin, and L. Wei, "Recent Progress of Fiber-based Transistors: Materials, Structures and Applications", Front. Optoelectron., 2022, 15, 2. 
  20. J. S. Heo, J. Eom, Y. H. Kim, and S. K. Park, "Recent Progress of Textile-based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications", Small, 2018, 14, 1703034. 
  21. J. B. Lee and V. Subramanian, "Weave Patterned Organic Transistors on Fiber for E-textiles", IEEE Trans Electron Devices, 2005, 52, 269-275.  https://doi.org/10.1109/TED.2004.841331
  22. S. Nam, J. Jang, J.-J. Park, S. W. Kim, C. E. Park, and J. M. Kim, "High-performance Low-voltage Organic Field-effect Transistors Prepared on Electro-polished Aluminum Wires", ACS Appl. Mater. Interfaces, 2012, 4, 6-10.  https://doi.org/10.1021/am2011405
  23. M. Maccioni, E. Orgiu, P. Cosseddu, S. Locci, and A. Bonfiglio, "Towards the Textile Transistor: Assembly and Characterization of an Organic Field Effect Transistor with a Cylindrical Geometry", Appl. Phys. Lett., 2006, 89, 143515. 
  24. H. Kim, T.-H. Kang, J. Ahn, H. Han, S. Park, S. J. Kim, M.-C. Park, S.-H. Paik, D. K. Hwang, and H. Yi, "Spirally Wrapped Carbon Nanotube Microelectrodes for Fiber Optoelectronic Devices Beyond Geometrical Limitations Toward Smart Wearable E-textile Applications", ACS Nano, 2020, 14, 17213-17223.  https://doi.org/10.1021/acsnano.0c07143
  25. G. Mattana, P. Cosseddu, B. Fraboni, G. G. Malliaras, J. P. Hinestroza, and A. Bonfiglio, "Organic Electronics on Natural Cotton Fibres", Org. Electron., 2011, 12, 2033-2039.  https://doi.org/10.1016/j.orgel.2011.09.001
  26. M. Hamedi, L. Herlogsson, X. Crispin, R. Marcilla, M. Berggren, and O. Inganas, "Fiber-embedded Electrolyte-gated Field-effect Transistors for E-textiles", Adv. Mater., 2009, 21, 573-577.  https://doi.org/10.1002/adma.200802681
  27. C. Muller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, M. Hedhammar, and O. Inganas, "Woven Electrochemical Transistors on Silk Fibers", Adv. Mater., 2011, 23, 898-901.  https://doi.org/10.1002/adma.201003601
  28. G. Tarabella, M. Villani, D. Calestani, R. Mosca, S. Iannotta, A. Zappettini, and N. Coppede, "A Single Cotton Fiber Organic Electrochemical Transistor for Liquid Electrolyte Saline Sensing", J. Mater. Chem., 2012, 22, 23830-23834.  https://doi.org/10.1039/c2jm34898e
  29. L. Zhang and T. Andrew, "Vapor-Coated Monofilament Fibers for Embroidered Electrochemical Transistor Arrays on Fabrics", Adv. Electron. Mater., 2018, 4, 1800271. 
  30. S. J. Kim, H. Kim, J. Ahn, D. K. Hwang, H. Ju, M. C. Park, H. Yang, S. H. Kim, H. W. Jang, and J. A. Lim, "A New Architecture for Fibrous Organic Transistors Based on a Double-stranded Assembly of Electrode Microfibers for Electronic Textile Applications", Adv. Mater., 2019, 31, 1900564. 
  31. M. Kang, S.-A. Lee, S. Jang, S. Hwang, S.-K. Lee, S. Bae, J.-M. Hong, S. H. Lee, K.-U. Jeong, and J. A. Lim, "Low-voltage Organic Transistor Memory Fiber with a Nanograined Organic Ferroelectric Film", ACS Appl Mater Interfaces, 2019, 11, 22575-22582.  https://doi.org/10.1021/acsami.9b03564
  32. B. Fang, J. Yan, D. Chang, J. Piao, K. M. Ma, Q. Gu, P. Gao, Y. Chai, and X. Tao, "Scalable Production of Ultrafine Polyaniline Fibres for Tactile Organic Electrochemical Transistors", Nat. Commun., 2022, 13, 2101. 
  33. X. Qing, Y. Wang, Y. Zhang, X. Ding, W. Zhong, D. Wang, W. Wang, Q. Liu, K. Liu, and M. Li, "Wearable Fiber-based Organic Electrochemical Transistors as a Platform For Highly Sensitive Dopamine Monitoring", ACS Appl Mater Interfaces, 2019, 11, 13105-13113.  https://doi.org/10.1021/acsami.9b00115
  34. Y. Tao, Y. Wang, R. Zhu, Y. Chen, X. Liu, M. Li, L. Yang, Y. Wang, and D. Wang, "Fiber Based Organic Electrochemical Transistor Integrated with Molecularly Imprinted Membrane for Uric Acid Detection", Talanta, 2022, 238, 123055. 
  35. J. Feng, Y. Fang, C. Wang, C. Chen, C. Tang, Y. Guo, L. Wang, Y. Yang, K. Zhang, and J. Wang, "All-Polymer Fiber Organic Electrochemical Transistor for Chronic Chemical Detection in the Brain", Adv. Funct. Mater., 2023, 33, 2214945. 
  36. Y. Fang, J. Feng, X. Shi, Y. Yang, J. Wang, X. Sun, W. Li, X. Sun, and H. Peng, "Coaxial Fiber Organic Electrochemical Transistor with High Transconductance", Nano Res., 2023, 16, 11885-11892. 
  37. S. Kwon, H. Kim, S. Choi, E. G. Jeong, D. Kim, S. Lee, H. S. Lee, Y. C. Seo, and K. C. Choi, "Weavable and Highly Efficient Organic Light-emitting Fibers for Wearable Electronics: A Scalable, Low-temperature Process", Nano Lett., 2018, 18, 347-356.  https://doi.org/10.1021/acs.nanolett.7b04204
  38. M. Kim, S. B. Jo, J. H. Park, and K. Cho, "Flexible Lateral Organic Solar Cells with Core-shell Structured Organic Nanofibers", Nano Energy, 2015, 18, 97-108.  https://doi.org/10.1016/j.nanoen.2015.10.007
  39. L. Zheng, C. Wang, X. Tian, X. Zhang, H. Dong, and W. Hu, "A General Route Towards Two-dimensional Organic Crystal-based Functional Fibriform Transistors for Wearable Electronic Textiles", J. Mater. Chem. C, 2021, 9, 472-480.  https://doi.org/10.1039/D0TC05390B
  40. Z. Liu, Z. Yin, Y. Jiang, and Q. Zheng, "Dielectric Interface Passivation of Polyelectrolyte-gated Organic Field-effect Transistors for Ultrasensitive Low-voltage Pressure Sensors in Wearable Applications", Mater. Today Electronics, 2022, 1, 100001.