과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C1003884).
참고문헌
- Amman, L., 2003, Cation exchange and adsorption on clays and clay minerals. Ph.D thesis, Christian-Albrechts University, Kiel, Germany.
- Ashraf, M. A, Akib, S., Maa, M. J., Yusoff, I. and Balkhair, K. S., 2014, Cesium-137: Radio-chemistry, fate, and transport, remediation, and future concerns. Critical Reviews in Environmental Science and Technology, 44, 1740-1793. https://doi.org/10.1080/10643389.2013.790753
- Baek, W., Avramov, P. V. and Kim, Y., 2019, Nuclear magnetic resonance and theoretical simualtion study on Cs ion co-adsorbed with other alkali cations on illite. Applied Surface Science, 489, 766-775. https://doi.org/10.1016/j.apsusc.2019.06.034
- Baek, W., Ha, S., Hong, S., Kim, S. and Kim, Y., 2018, Cation exchange of cesium and cation selectivity of natural zeolites: Chabazite, stilbite, and heulandite. Micorporous and Mesoporous Materials, 264, 159-166. https://doi.org/10.1016/j.micromeso.2018.01.025
- Beresford, N. A., Fesenko, S., Konoplev, A., Skuterud, L., Smith, J.T. and Voigt, G., 2016, Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 157, 77-89. https://doi.org/10.1016/j.jenvrad.2016.02.003
- Bish, D.L. and Post, J.E., 1989, Thermal behavior of complex, tunnel-structure manganese oxides. American Mineralogist, 74, 177-186.
- Bosch, P., Caputo, D., Liguori, B. and Colella, C., 2004, Safe trapping of Cs in heat-treated zeolite matrices. Journal of Nuclear Materials, 324, 183-188. https://doi.org/10.1016/j.jnucmat.2003.10.001
- Bostick, B.C., Vairavamurthy, M.A., Karthikeyan, K. and Chorover, J., 2002, Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation. Environmental Science and Technology, 36, 2670-2676. https://doi.org/10.1021/es0156892
- Cappelletti, P., Rapisardo, G., de Gennaro, B., Colella, A., Langella, A., Graziano, S.F., Bish, D.L. and de Gennaro, M., 2011, Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites. Journal of Nuclear Materials, 414, 451-457. https://doi.org/10.1016/j.jnucmat.2011.05.032
- Faulring, G.M., Zwicker, W.K. and Forgeng, W.D., 1960, Thermal transformations and properties of cryptomelane. American Mineralogist, 45, 946-959.
- Figueira, B.A.M., Angelica, R.S., da Costa, M.L., Biggemann, D., Mercury, J.M.R. and Pollmann, H., 2013, Hydrothermal synthesis of Na-birnessite-type material using ores from Carajas (Amazon Region, Brazil) as Mn source. Microporous and Mesoporous Materials, 179, 212-216. https://doi.org/10.1016/j.micromeso.2013.06.011
- Golden, D.G., Dixon, J.B. and Chen, C.C., 1986, Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clays and Clay Minerals, 34, 511-520. https://doi.org/10.1346/CCMN.1986.0340503
- Gu, B.X., Wang, L.M. and Ewing, R.C., 2000, The effect of amorphization on the Cs ion exchange and retention capacity of zeolite-NaY. Journal of Nuclear Materials, 278, 64-72. https://doi.org/10.1016/S0022-3115(99)00224-X
- Hwang, J., Han, W.S., Choung, S., Kim, J.-W., Suk, H. and Lee, J., 2023, Diverse sorption capacitites and contribution of multiple sorptive sites on illitic clays to assess the immobilization of dissolved cesium in subsurface environments. Journal of Hazardous Materials, 441, 129973.
- Jiang, W.-T., Chang, P.-H., Wang, Y.-S., Tsai, Y., Jean, J.-S. and Li, Z., 2015, Sorption and desorption of tetracycline on layered manganese dioxide birnessite. International Journal of Environmental Science and Technology, 12, 1695-1704. https://doi.org/10.1007/s13762-014-0547-6
- Kim, S., Kim, Y. and Park, C., 2023, Cs fixation and leaching characteristics of high temperature-treated todorokite. Korean Journal of Mineralogy and Petrology, 36, 35-42.
- Kim, Y. and Kirkpatrick, R.J., 1997, 23Na and 133Cs NMR study of cation adsorption on mineral surfaces: Local environments, dynamics, and effects of mixed cations. Geochimica et Cosmochimica Acta, 61, 5199-5208. https://doi.org/10.1016/S0016-7037(97)00347-5
- Kudo, H., Miura, H. and Hariya, Y., 1990, Tetragonal-monoclinic transformation of cryptomelane at high temperature. Mineralogical Journal, 15, 50-63. https://doi.org/10.2465/minerj.15.50
- Lee, A., Chon, C.-M., Kim, J.G., Ryu, J. and Kim, Y., 2023, Irreversible cesium adsorption capacity of granite-origin soil. Journal of Radioanalytical and Nuclear Chemistry, https://doi.org/10.1007/s10967-023-09206-7.
- Li, L., Xu, Z., Li, H., Li, J., Hu, D., Xiang, Y., Han, L. and Peng, X., 2022, Immobilization of strontium and cesium by aluminosilicate ceramics derived from metakaolin geopolymer-zeolite A composite vis 1100℃ heating treatment. Ceramics International, 48, 15236-15242. https://doi.org/10.1016/j.ceramint.2022.02.054
- Liguori, B., Caputo, D., Iucolano, F., Apera, P. and de Gennaro, B., 2013, Entrapping of Cs and Sr in heat-treated zeolite matrices. Journal of Nuclear Materials, 435, 196-201. https://doi.org/10.1016/j.jnucmat.2012.12.043
- Ma, Y., Luo, J. and Suib, S.L., 1999, Syntheses of birnessites using alcohols as reducing reagents: Effects of synthesis parameters on the formation of birnessites. Chemistry of Materials, 11, 1972-1979. https://doi.org/10.1021/cm980399e
- Matern, K. and Mansfeldt, T., 2015, Molybdate adsorption by birnessite. Applied Clay Science, 108, 78-83. https://doi.org/10.1016/j.clay.2015.01.024
- Min, S. and Kim, Y., 2020, Physical characteristics of the birnessite and todorokite synthesized using various methods. Minerals, 10, 884.
- Min, S. and Kim, Y. 2022, Adsorption characteristics of Cs and cation selectivity of todorokite. Colloids and Surfaces A: Physical and Engineering Aspects, 650, 129652.
- Murota, K., Saito, T. and Tanak, S., 2016, Desorption kinetics of cesium from Fukushima soils. Journal of Environmental Radioactivity, 153, 134-140. https://doi.org/10.1016/j.jenvrad.2015.12.013
- Randall, S.R., Sherman, D.M. and Ragnarsdottir, K.V., 1998, An extended X-ray absrorption fine structure spectroscopy investigation of cadmium sorption on cryptomelane (KMn8O16). Chemical Geology, 151, 95-106. https://doi.org/10.1016/S0009-2541(98)00073-4
- Ryabova, A.S., Istomin, S.Y., Dosaev, K.A., Bonnefont, A., Hadermann, J., Arkharova, N.A., Orekhov, A.S., Paria, S., Saveleva, V.A., Kerangueven, G., Antipov, E.V., Savinova, E.R. and Tsirlina, G.A., 2021, Mn2O3 oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media: Highly active if properly manipulated. Electrochimica Acta, 367, 137378.
- Takahashi, J., Tamura, K., Suda, T., Matsumura, R. and Onda, Y., 2015, Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 139, 351-361. https://doi.org/10.1016/j.jenvrad.2014.07.004
- Tang, X., Li, H., Liu, Z.-H., Yang, Z. and Wang, Z., 2011, Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure. Journal of Power Sources, 196, 855-859. https://doi.org/10.1016/j.jpowsour.2010.06.067
- Tsukada, H., Yamada, D. and Yamaguchi, N., 2022, Accumulation of 137Cs in aggregated organominerals assemblage in pasture soils 8 years after the accident at the Fukushima Daiichi nuclear power plant. Science of The Total Environment, 806, Part 2, 150688.
- Vermeersch, E., Kosek, F., De Grave, J., Jehlicka, J., Vandenabeele, P. and Rousaki, A., 2023, Identification of tunnel structures in manganese oxdie minerals using micro-Raman spectroscopy. Journal of Raman Spectroscopy, 54, 1212.
- Wang, J., Baskaran, M., Cukrov, N. and Du, J., 2022, Geochemical mobility of 137Cs in marine environments based on laboratory and field studies. Chemical Geology, 614, 121179.
- Wang, J., Zhangil, G. and Zhangil, P., 2017, Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity. Journal of Material Chemistry A, 5, 5719-5725. https://doi.org/10.1039/C6TA09793F
- Yang, L.-X., Zhu, Y.-J. and Cheng, G.-F., 2007, Synthesis of well-crystallized birnessite using ethylene glycol as a reducing reagent. Materials Research Bulletin, 42, 159-164. https://doi.org/10.1016/j.materresbull.2006.04.038
- Yu, Q., Ohnuki, T., Kozai, N., Sakamoto, F., Tanaka, K. and Sasaki, K., 2017, Quantitative analysis of radiocesium retention onto birnessite and todorokite. Chemical Geology, 470, 141-151. https://doi.org/10.1016/j.chemgeo.2017.09.008