DOI QR코드

DOI QR Code

A Preliminary X-ray Photoelectron Spectroscopic Study on the Manganese Oxidation State of in Polymetallic Nodules of the East Siberian Sea

동시베리아해 망가니즈 단괴의 망가니즈 산화상태 변화 규명을 위한 X선 광전자 분광분석 예비연구

  • Hyo-Im Kim (Department of Geology, Gyeongsang National University) ;
  • Sangmi Lee (Department of Geology, Gyeongsang National University) ;
  • Hyo-Jin Koo (Department of Geology, Gyeongsang National University) ;
  • Yoon Ji (Department of Geology, Gyeongsang National University) ;
  • Hyen-Goo Cho (Department of Geology, Gyeongsang National University)
  • 김효임 (경상국립대학교 지질과학과) ;
  • 이상미 (경상국립대학교 지질과학과) ;
  • 구효진 (경상국립대학교 지질과학과) ;
  • 지윤 (경상국립대학교 지질과학과) ;
  • 조현구 (경상국립대학교 지질과학과)
  • Received : 2023.11.25
  • Accepted : 2023.12.15
  • Published : 2023.12.30

Abstract

The determination of the oxidation states of metal elements in manganese nodules sheds light on the understanding of the formation mechanism of nodules, providing insights into the paleo-environmental conditions such as the redox potential of the aqueous system. This study aims to reveal the oxidation states and chemical bonding of manganese in the natural polymetallic nodules, utilizing conventional X-ray photoelectron spectroscopy (XPS). Specifically, shallow manganese nodules from the Siberian Arctic Sea, effectively recording mineralogical variations, were used in this study. Detailed analysis of XPS Mn 2p spectra showed changes in the manganese oxidation state from the center to the outer parts of the nodules. The central part of the nodules showed a higher Mn4+ content, approximately 67.9%, while the outermost part showed about 63% of Mn4+ due to an increase in the Mn3++Mn2+. The decrease in the Mn oxidation state with the growth is consistent with the previously reported mineralogical variations from todorokite to birnessite with growth. Additionally, the O 1s spectra presented a predominance of Mn-O-H bonds in the outer layers compared to the center, suggesting hydration by water in the layered manganates of outer layers. The results of this study demonstrate that XPS can be directly applied to understand changes in paleo-environmental conditions such as the redox states during the growth of manganese nodules. Finally, future studies using high-resolution synchrotron-based XPS experiments could achieve details in oxidation states of manganese and trace metal elements.

망가니즈 단괴를 구성하고 있는 금속 원소의 산화상태의 규명은 단괴의 형성기작 및 성인에 대한 이해를 증진시키고 단괴 형성 당시 수계의 산화-환원 전위 등의 고해양 환경에 대한 단서를 제공한다. 본 연구에서는 상용 X선 광전자 분광분석(X-ray photoelectron spectroscopy; XPS)을 활용하여 자연계 망가니즈 단괴를 구성하는 광물의 결합상태와 금속 원소의 산화상태에 대한 정보를 획득하고자 하였다. 이를 위하여 위하여 광물학적 변동의 영향이 효과적으로 기록된 동시베리아해 천해 단괴를 그 연구의 대상으로 삼았다. XPS Mn 2p 스펙트럼 분석 결과, 단괴의 중심부에서 외곽부로 이동함에 따라 망가니즈 산화 상태에 유의미한 변화가 있음을 확인할 수 있었다. 단괴의 중심부는 Mn4+가 약 67.9%의 비율을 보이는 반면, 단괴의 최외곽부는 환원된 형태의 Mn3++Mn2+의 증가로 인해 Mn4+의 비율이 약 63%로 감소하였다. 이와 같은 단괴 성장에 따른 망가니즈 산화수의 감소는 단괴가 성장함에 따라 토도로카이트에서 버네사이트로 산화망가니즈 광물종이 변화한다는 기존 연구 결과로 설명된다. 또한 O 1s 스펙트럼 분석 결과 단괴 중심부에 비하여 외곽에서 Mn-O-H 결합이 우세하게 나타나는데, 이는 층상형 버네사이트가 우세한 외곽부에서 보다 해수 혹은 공극수로 인한 수화가 효과적으로 일어났음을 시사한다. 본 연구 결과는 망가니즈 단괴의 성장 중 수계의 산화-환원 양상 등 고해양 조건의 변동에 대해 XPS 방법론이 직접적으로 활용될 수 있음을 제시하며, 향후 보다 높은 분해능의 방사광 X선원을 이용한 실험을 통해 보다 세밀한 단위의 망가니즈 산화수 정보의 획득 및 미량 금속원소의 산화 상태 연구가 가능할 것임을 보여준다.

Keywords

Acknowledgement

본 연구는 2023년도 교육부의 재원의 한국연구재단 램프(LAMP) 사업(RS-2023-00301974)과 과학기술정보통신부재원의 신진연구(NRF-2022R1C1C1003385)의 지원을 받았으며, 해양수산부 재원의 해양수산과학기술진흥원(RS-2023-00259686) 및 극지연구소의 지원(KIMST Grant 20210632)으로 수행되었습니다. 동시 베리아해 탐사 중 단괴 획득을 위해 힘써주신 아라온호의 연구원 및 승무원 분들께 진심으로 감사드립니다. 본 논문의 발전을 위하여 사독해주신 충북대학교 이승열 교수님과 익명의 심사위원분께도 깊은 감사를 드립니다.

References

  1. Atkins, A.L., Shaw, S. and Peacock, C.L., 2014, Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments: Geochimica et Cosmochimica Acta, 144, 109-125. https://doi.org/10.1016/j.gca.2014.08.014
  2. Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T. and Usui, A., 2014, Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium: Chemical Geology, 381, 1-9. https://doi.org/10.1016/j.chemgeo.2014.05.004
  3. Blothe, M., Wegorzewski, A., Muller, C., Simon, F., Kuhn, T. and Schippers, A., 2015, Manganese-cycling microbial communities inside deep-sea manganese nodules: Environmental science & technology, 49(13), 7692-7700. https://doi.org/10.1021/es504930v
  4. Bodei, S., Manceau, A., Geoffroy, N., Baronnet, A. and Buatier, M., 2007, Formation of todorokite from vernadite in Ni-rich hemipelagic sediments: Geochimica et Cosmochimica Acta, 71(23), 5698-5716. https://doi.org/10.1016/j.gca.2007.07.020
  5. Boumaiza, H., Renard, A., Robinson, M.R., Kervern, G., Vidal, L., Ruby, C., Bergaoui, L. and Coustel, R., 2019, A multitechnique approach for studying Na triclinic and hexagonal birnessites: Journal of Solid State Chemistry, 272, 234-243. https://doi.org/10.1016/j.jssc.2019.02.017
  6. Feng, X.H., Zhu, M., Ginder-Vogel, M., Ni, C., Parikh, S.J. and Sparks, D.L., 2010, Formation of nano-crystalline todorokite from biogenic Mn oxides: Geochimica et Cosmochimica Acta, 74(11), 3232-3245. https://doi.org/10.1016/j.gca.2010.03.005
  7. Guan, Y., Sun, X., Jiang, X., Sa, R., Zhou, L., Huang, Y., Liu, Y., Li, X., Lu, R. and Wang, C., 2017, The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea: Acta Oceanologica Sinica, 36, 34-46. https://doi.org/10.1007/s13131-017-1004-4
  8. Hein, J.R. and Koschinsky, A., 2014, Deep-Ocean Ferromanganese Crusts and Nodules, in Holland, H.D., and Turekian, K.K., eds., Treatise on Geochemistry (Second Edition): Oxford, Elsevier, p. 273-291.
  9. Hochella Jr, M.F., Kasama, T., Putnis, A., Putnis, C.V. and Moore, J.N., 2005, Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex: American Mineralogist, 90(4), 718-724. https://doi.org/10.2138/am.2005.1591
  10. Choi, H., Chang, S.-W. and Lee, S.-R., 2000, Correlation between Mineralogical and Chemical Compositions of the Micro-Textures in Manganese Nodules: Journal of the Mineralogical Society of Korea, 13(4), 205-220.
  11. Ilton, E.S., Post, J.E., Heaney, P.J., Ling, F.T. and Kerisit, S.N., 2016, XPS determination of Mn oxidation states in Mn (hydr)oxides: Applied Surface Science, 366, 475-485. https://doi.org/10.1016/j.apsusc.2015.12.159
  12. Kim, H.-I., Cho, H.G., Lee, S., Koo, H.J., Hong, J. K. and Jin, Y.K., 2023, Spatial distribution of manganese oxide minerals in the natural ferromanganese nodule of the Arctic Sea: A view from Raman spectroscopy: Chemical Geology, 623, 121398.
  13. Knipe, S., Mycroft, J., Pratt, A., Nesbitt, H. and Bancroff, G., 1995, X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals: Geochimica et Cosmochimica Acta, 59(6), 1079-1090. https://doi.org/10.1016/0016-7037(95)00025-U
  14. Koo, H.J., Cho, H.G., Yoo, C.M. and Jin, Y.K., 2017, Characteristics of Manganese Nodule from the East Siberian Sea: Journal of the mineralogical society of korea, 30(4), 219-227. https://doi.org/10.9727/jmsk.2017.30.4.219
  15. Koschinsky, A., Bau, M., Marbler, H. and Schmidt, K., 2010, Rare valuable metals in marine ferromanganese nodules-contents and accumulation processes: Zeitschrift fur angewandte Geologie, 51(2), 33-39.
  16. Kuhn, T., Wegorzewski, A., Ruhlemann, C. and Vink, A., 2017, Composition, formation, and occurrence of polymetallic nodules: Deep-sea mining: Resource potential, technical and environmental considerations, 23-63.
  17. Lee, S., Xu, H., Xu, W. and Sun, X., 2019, The structure and crystal chemistry of vernadite in ferromanganese crusts: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75(4), 591-598. https://doi.org/10.1107/S2052520619006528
  18. Li, D.F., Fu, Y., Liu, Q.F., Reinfelder, J.R., Hollings, P., Sun, X.M., Tan, C.Y., Dong, Y.H. and Ma, W.L., 2020, High-resolution LA-ICP-MS mapping of deep-sea polymetallic micronodules and its implications on element mobility: Gondwana Research, 81, 461-474. https://doi.org/10.1016/j.gr.2019.12.009
  19. Manceau, A., Lanson, M. and Takahashi, Y., 2014, Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule: American Mineralogist, 99(10), 2068-2083. https://doi.org/10.2138/am-2014-4742
  20. Manceau, A., Marcus, M.A. and Grangeon, S., 2012, Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy: American Mineralogist, 97(5-6), 816-827. https://doi.org/10.2138/am.2012.3903
  21. Park, J., Jung, J., Ko, Y., Lee, Y. and Yang, K., 2023, Reconstruction of the Paleo-Ocean Environment Using Mineralogical and Geochemical Analyses of Mixed-Type Ferromanganese Nodules From the Tabletop of Western Pacific Magellan Seamount: Geochemistry, Geophysics, Geosystems, 24(2), e2022GC010768.
  22. Post, J.E., Heaney, P.J. and Hanson, J., 2003, Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite: American Mineralogist, 88(1), 142-150. https://doi.org/10.2138/am-2003-0117
  23. Post, J.E., McKeown, D.A. and Heaney, P.J., 2020, Raman spectroscopy study of manganese oxides: Tunnel structures: American Mineralogist, 105(8), 1175-1190. https://doi.org/10.2138/am-2020-7390
  24. Rehkamper, M., Frank, M., Hein, J. R., Porcelli, D., Halliday, A., Ingri, J. and Liebetrau, V., 2002, Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits: Earth and Planetary Science Letters, 197(1-2), 65-81. https://doi.org/10.1016/S0012-821X(02)00462-4
  25. Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D. and Webb, S.M., 2004, Biogenic manganese oxides: properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci., 32, 287-328 https://doi.org/10.1146/annurev.earth.32.101802.120213
  26. Vineesh, T.C., Nagender Nath, B., Banerjee, R., Jaisankar, S. and Lekshmi, V., 2009, Manganese nodule morphology as indicators for oceanic processes in the Central Indian Basin. International Geology Review, 51(1), 27-44. https://doi.org/10.1080/00206810802622773
  27. Wegorzewski, A.V. and Kuhn, T., 2014, The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean: Marine Geology, 357, 123-138. https://doi.org/10.1016/j.margeo.2014.07.004
  28. Xiao, F. and Xu, Y., 2013, Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application: Journal of Materials Science: Materials in Electronics, 24, 1913-1920. https://doi.org/10.1007/s10854-012-1034-9
  29. Xie, G., Liu, X., Li, Q., Lin, H., Li, Y., Nie, M., and Qin, L., 2017, The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors: Journal of Materials Science, 52, 10915-10926. https://doi.org/10.1007/s10853-017-1116-4
  30. Yu, H.J., Shin, E.J., Koo, H.J. and Cho, H.G., 2020, Semiquantitative Analysis of Manganese Oxide Mineral in Manganese Nodule From the East Siberian Sea: Korean Journal of Mineralogy and Petrology, 33(4), 427-437.