DOI QR코드

DOI QR Code

포말건조 조건에 따른 애플망고 분말의 건조 가공 특성

Drying Characteristics of Mango Powder according to Foam-Mat Drying Conditions

  • 오현빈 (국립농업과학원 농식품자원부 발효가공식품과) ;
  • 백채완 (국립농업과학원 농식품자원부 발효가공식품과) ;
  • 곽태호 (국립한국농수산대학교 농수산융합학부) ;
  • 장현욱 (국립농업과학원 농식품자원부 발효가공식품과) ;
  • 김하윤 (국립농업과학원 농식품자원부 발효가공식품과) ;
  • 조용식 (국립농업과학원 농식품자원부 발효가공식품과)
  • Hyeonbin Oh (Fermented and Processed Food Division, Dept. of Agro-Food Resources, NAAS, RDA) ;
  • Chae-wan Baek (Fermented and Processed Food Division, Dept. of Agro-Food Resources, NAAS, RDA) ;
  • Taeho Kwak (Major in Agricultural and Fishery Processing, Korea National University of Agriculture and Fisheries) ;
  • Hyun-Wook Jang (Fermented and Processed Food Division, Dept. of Agro-Food Resources, NAAS, RDA) ;
  • Ha-Yun Kim (Fermented and Processed Food Division, Dept. of Agro-Food Resources, NAAS, RDA) ;
  • Yong Sik Cho (Fermented and Processed Food Division, Dept. of Agro-Food Resources, NAAS, RDA)
  • 투고 : 2023.10.27
  • 심사 : 2023.12.04
  • 발행 : 2023.12.31

초록

This study explored a method to enhance the drying process usability of local mangoes by producing foam-mat dried powder under varying drying temperatures (50, 60, 70℃) and foam thicknesses (3, 6, 9 mm). The drying process period ranged from 60 to 390 minutes based on the set conditions, with higher temperatures and thinner foams accelerating drying. Powder chromaticity (L*,(L*, a*, and b*) demonstrated a declining trend with increasing drying temperature and foam thickness, exhibiting notable variance in chroma values. The water absorption index varied significantly, between 3.08 to 4.24, under different drying conditions, although the water solubility index remained consistent across foam-dried samples. Powder moisture content ranged from 2.53% to 3.83%, with hygroscopicity escalating with temperature and foam thickness. Vitamin C structure was compromised during the hot air drying process, especially at temperatures above 60℃. Electronic nose analysis distinguished foam-dried powder from freeze-dried powder; however, a thicker foam yielded a scent profile closer to that of freeze-dried powder. The findings provide fundamental data on mango foam drying, which is expected to improve processing and storage tech for local mangoes.

키워드

과제정보

본 연구는 농촌진흥청 기관고유과제 연구사업(과제번호: PJ01593002)의 연구비 지원으로 수행된 과제로 이에 감사드립니다.

참고문헌

  1. AACC. 2009. AACC International Approved Methods of Analysis. 11th ed. AACC International 
  2. Akther S, Sultana A, Badsha MR, Rahman MM, Alim MA, Amin AM. 2020. Physicochemical properties of mango (Amropali cultivar) powder and its reconstituted product as affected by drying methods. Int J Food Prop 23: 2201-2216  https://doi.org/10.1080/10942912.2020.1849278
  3. Azizpour M, Mohebbi M, Khodaparast MHH, Varidi M. 2014. Optimization of foaming parameters and investigating the effects of drying temperature on the foam-mat drying of shrimp (Penaeus indicus). Dry Technol 32: 374-384  https://doi.org/10.1080/07373937.2013.794829
  4. Basu S, Shivhare US. 2010. Rheological, textural, microstructural and sensory properties of mango jam. J Food Eng 100:357-365  https://doi.org/10.1016/j.jfoodeng.2010.04.022
  5. Bhusari SN, Muzaffar K, Kumar P. 2014. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol 266: 354-364  https://doi.org/10.1016/j.powtec.2014.06.038
  6. Brar AS, Kaur P, Kaur G, Subramanian J, Kumar D, Singh A. 2020. Optimization of process parameters for foammat drying of peaches. Int J Fruit Sci 20: S1495-S1518  https://doi.org/10.1080/15538362.2020.1812017
  7. Caparino OA, Tang J, Nindo CI, Sablani SS, Powers JR, Fellman JK. 2012. Effect of drying methods on the physical properties and microstructures of mango (Philippine 'Carabao' var.) powder. J Food Eng111: 135-148  https://doi.org/10.1016/j.jfoodeng.2012.01.010
  8. Chen JP, Tai CY, Chen BH. 2004. Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.). J ChromatogrA 1054:261-268  https://doi.org/10.1016/j.chroma.2004.08.100
  9. Delfiya DSA, Prashob K, Murali S, Alfiya PV, Samuel MP, Pandiselvam R. 2022. Drying kinetics of food materials in infrared radiation drying: A review. J Food Process Eng 45:e13810 
  10. Demiray E, Tulek Y. 2017. Degradation kinetics of β- carotene in carrot slices during convective drying. Int J Food Prop 20:151-156  https://doi.org/10.1080/10942912.2016.1147460
  11. Dehghannya J, Pourahmad M, Ghanbarzadeh B, Ghaffari H. 2019. Heat and mass transfer enhancement during foam-mat drying process of lime juice: Impact of convective hot air temperature. Int J Therm Sci 135: 30-43  https://doi.org/10.1016/j.ijthermalsci.2018.07.023
  12. Franco TS, Perussello CA, Ellendersen LDSN, Masson ML. 2015. Foam mat drying of yacon juice: Experimental analysis and computer simulation. J Food Eng158: 48-57  https://doi.org/10.1016/j.jfoodeng.2015.02.030
  13. Guiamba IRF, Svanberg U, Ahrne L. 2015. Effect of infrared blanching on enzyme activity and retention of β-carotene and vitamin C in dried mango. J Food Sci 80:E1235-E1242  https://doi.org/10.1111/1750-3841.12866
  14. Hardy Z, Jideani VA. 2017. Foam-mat drying technology: A review. Crit Rev Food Sci Nutr 57:2560-2572  https://doi.org/10.1080/10408398.2015.1020359
  15. Hernandez Y, Lobo MG, Gonzalez M. 2006. Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chem 96:654-664  https://doi.org/10.1016/j.foodchem.2005.04.012
  16. Hossain MA, Mitra S, Belal M, Zzaman W. 2021. Effect of foaming agent concentration and drying temperature on biochemical properties of foam mat dried tomato powder. Food Res 5:291-297  https://doi.org/10.26656/fr.2017.5(1).372
  17. Izadi Z, Mohebbi M, Shahidi F, Varidi M, Salahi MR. 2020. Cheese powder production and characterization: A foam-mat drying approach. Food Bioprod Process 123:225-237  https://doi.org/10.1016/j.fbp.2020.06.019
  18. Kamali R, Dadashi S, Dehghannya J, Ghaffari H. 2022. Numerical simulation and experimental investigation of foam-mat drying for producing banana powder as influenced by foam thickness. Appl Food Res 2:100075 
  19. Kandasamy P, Varadharaju N, Kalemullah S, Maladhi D. 2014. Optimization of process parameters for foam-mat drying of papaya pulp. J Food Sci Technol 51:2526-2534  https://doi.org/10.1007/s13197-012-0812-y
  20. Kim JY, Yang HS, Kang HJ, Choe J, Hwang IG. 2023. Chemical composition, antioxidant and anti-inflammatory potential in whole, flesh, and peels of Codonopsis lanceolata roots. J Korean Soc Food Sci Nutr 52:26-39 
  21. Kumar A, Kandasamy P, Chakraborty I, Hangshing L. 2022. Analysis of energy consumption, heat and mass transfer, drying kinetics and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosyst Eng 219:85-102  https://doi.org/10.1016/j.biosystemseng.2022.04.026
  22. Lebrun M, Plotto A, Goodner K, Ducamp MN, Baldwin E. 2008. Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography. Postharvest Biol Technol 48:122-131  https://doi.org/10.1016/j.postharvbio.2007.09.010
  23. Lee SJ, Kim SH, Gwon HM, Kim SY, Yeo SH. 2021. Comparison of flavors of farm-made 'Kujippong' (Cudrania tricuspidata) fermented vinegar using electronic nose and electronic tongue. Korean J Food Preserv 28: 820-827  https://doi.org/10.11002/kjfp.2021.28.6.820
  24. Li TS, Sulaiman R, Rukayadi Y, Ramli S. 2021. Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocoll 116:106492 
  25. Liu FX, Fu SF, Bi XF, Chen F, Liao XJ, Hu XS, Wu JH. 2013. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem 138:396-405  https://doi.org/10.1016/j.foodchem.2012.09.111
  26. Maldonado-Celis ME, Yahia EM, Bedoya R, Landazuri P, Loango N, Aguillon J, Restrepo B, Guerrero Ospina JC. 2019. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Front Plant Sci 10:1073 
  27. Mei S, Ma H, Chen X. 2021. Anticancer and antiinflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem Toxicol 149: 111997 
  28. Mugodo K, Workneh TS. 2021. The kinetics of thin-layer drying and modelling for mango slices and the influence of differing hot-air drying methods on quality. Heliyon7:e07182 
  29. Ng ML, Sulaiman R. 2018. Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT 88:80-86  https://doi.org/10.1016/j.lwt.2017.08.032
  30. Oh HB, Shim HJ, Baek C, Jang HW, Hwang Y, Cho YS. 2022. Application of response surface methodology for optimization of applemango jelly processing. Korean J Food Nutr 35:473-480 
  31. Qadri OS, Srivastava AK, Yousuf B. 2020. Trends in foam mat drying of foods: Special emphasis on hybrid foam mat drying technology. Crit Rev Food Sci Nutr 60: 1667-1676  https://doi.org/10.1080/10408398.2019.1588221
  32. Salahi MR, Mohebbi M, Taghizadeh M. 2015. Foam-mat drying of cantaloupe (Cucumis melo): Optimization of foaming parameters and investigating drying characteristics. J Food Process Preserv 39:1798-1808  https://doi.org/10.1111/jfpp.12414
  33. Sangamithra A, Venkatachalam S, John SG, Kuppuswamy K. 2015. Foam mat drying of food materials: A review. J Food Process Preserv 39:3165-3174  https://doi.org/10.1111/jfpp.12421
  34. Schuck P, Jeantet R, Dolivet A. 2012. Analytical Methods for Food and Dairy Powders. pp.167-190. Wiley-Blackwell 
  35. Sehrawat R, Nema PK, Kaur BP. 2018. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT 92:548-555  https://doi.org/10.1016/j.lwt.2018.03.012
  36. Susanti DY, Sediawan WB, Fahrurrozi M, Hidayat M. 2021. Foam-mat drying in the encapsulation of red sorghum extract: Effects of xanthan gum addition on foam properties and drying kinetics. J Saudi Soc Agric Sci 20:270-279  https://doi.org/10.1016/j.jssas.2021.02.007
  37. Tefera A, Seyoum T, Woldetsadik K. 2007. Effect of disinfection, packaging, and storage environment on the shelf life of mango. Biosyst Eng 96:201-212  https://doi.org/10.1016/j.biosystemseng.2006.10.006
  38. Varhan E, Elmas F, Koc M. 2019. Foam mat drying of fig fruit: Optimization of foam composition and physico-chemical properties of fig powder. J Food Process Eng 42:e13022 
  39. Watanawan C, Wasusri T, Srilaong V, Wongs-Aree C, Kanlayanarat S. 2014. Near infrared spectroscopic evaluation of fruit maturity and quality of export Thai mango (Mangifera indica L. var. Namdokmai). Int Food Res J 21:1109-1114 
  40. Zhang Y, Zhao JH, Ding Y, Xiao HW, Sablani SS, Nie Y, Wu SJ, Tang XM. 2018. Changes in the vitamin C content of mango with water state and ice crystals under state/phase transitions during frozen storage. J Food Eng 222:49-53  https://doi.org/10.1016/j.jfoodeng.2017.11.003
  41. Zhu J, Liu Y, Zhu C, Wei M. 2022. Effects of different drying methods on the physical properties and sensory characteristics of apple chip snacks. LWT 154:112829 
  42. Zongo PA, Khalloufi S, Mikhaylin S, Ratti C. 2022. Pulsed electric field and freeze-thawing pretreatments for sugar uptake modulation during osmotic dehydration of mango. Foods 11:2551