DOI QR코드

DOI QR Code

Number of Scatterings in Random Walks

  • 투고 : 2023.11.24
  • 심사 : 2023.12.21
  • 발행 : 2023.12.30

초록

This paper investigates the number of scatterings a photon undergoes in random walks before escaping from a medium. The number of scatterings in random walk processes is commonly approximated as τ + τ2 in the literature, where τ is the optical thickness measured from the center of the medium. However, it is found that this formula is not accurate. In this study, analytical solutions in sphere and slab geometries are derived for both optically thin and optically thick limits, assuming isotropic scattering. These solutions are verified using Monte Carlo simulations. In the optically thick limit, the number of scatterings is found to be 0.5 τ2 and 1.5 τ2 in a sphere and slab, respectively. In the optically thin limit, the number of scatterings is ≈ τ in a sphere and ≈ τ (1 - γ - ln τ + τ) in a slab, where γ ≃ 0.57722 is the Euler-Mascheroni constant. Additionally, we present approximate formulas that reasonably reproduce the simulation results well in intermediate optical depths. These results are applicable to scattering processes that exhibit forward and backward symmetry, including both isotropic and Thomson scattering.

키워드

과제정보

The authors are grateful to the referee, who provided constructive comments. This work was partially supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1005788) and by the Korea Astronomy and Space Science Institute grant funded by the Korea government (MSIT; No. 2023183000 and 2023186903).

참고문헌

  1. Adams, T. F. 1972, ApJ, 174, 439
  2. Ahn, S.-H., Lee, H.-W., & Lee, H. M. 2000, JKAS, 33, 29
  3. Angel, J. R. P. 1969, ApJ, 158, 219
  4. Baes, M., Verstappen, J., De Looze, I., et al. 2011, ApJS, 196, 22
  5. Cashwell, E. D., & Everett, C. J. 1959, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Oxford: Pergamon Press)
  6. Chandrasekhar, S. 1943, Rev. Mod. Phys., 15, 1
  7. Chandrasekhar, S. 1960, Radiative transfer (New York: Dover Publications)
  8. Chang, S.-J., Yang, Y., Seon, K.-I., Zabludoff, A., & Lee, H.-W. 2023, ApJ, 945, 100 https://doi.org/10.3847/1538-4357/acac98
  9. Choe, H. Y., & Lee, H.-W. 2023, JKAS, 56, 23
  10. Gronke, M., & Dijkstra, M. 2014, MNRAS, 444, 1095
  11. Harrington, J. P. 1973, MNRAS, 162, 43
  12. Kim, H. J., Lee, H.-W., & Kang, S. 2007, MNRAS, 374, 187
  13. Lao, B.-X., & Smith, A. 2020, MNRAS, 497, 3925
  14. Lee, H.-W. 1999, ApJ, 511, L13
  15. Osterbrock, D. E. 1962, ApJ, 135, 195
  16. Phillips, K. C., & Meszaros, P. 1986, ApJ, 310, 284
  17. Pozdnyakov, L. A., Sobol, I. M., & Syunyaev, R. A. 1983, Astrophys. Space Phys. Res., 2, 189
  18. Rybicki, G. B., & Lightman, A. P. 1986, Radiative Processes in Astrophysics (New York: Wiley)
  19. Seon, K.-I. 2006, PASJ, 58, 439
  20. Seon, K.-I. 2009, Publ. Kor. Astron. Soc., 24, 43
  21. Seon, K.-I. 2023, arXiv e-prints, arXiv:2310.17908 (submitted to ApJ)
  22. Seon, K.-I., & Kim, C.-G. 2020, ApJS, 250, 9
  23. Seon, K.-I., Song, H., & Chang, S.-J. 2022, ApJS, 259, 3 https://doi.org/10.3847/1538-4365/ac3af1
  24. Song, H., Seon, K.-I., & Hwang, H. S. 2020, ApJ, 901, 41
  25. Verhamme, A., Schaerer, D., & Maselli, A. 2006, A&A, 460, 397
  26. Witt, A. N. 1977, ApJS, 35, 1
  27. Yan, D., Seon, K.-I., Guo, J., Chen, G., & Li, L. 2022, ApJ, 936, 177
  28. Zheng, Z., & Miralda-Escude, J. 2002, ApJ, 578, 33