DOI QR코드

DOI QR Code

Solar Interior Currents Presumed by Solar Surface Magnetic Fields

  • Bogyeong Kim (Institute of Natural Sciences, Chungnam National University) ;
  • Yu Yi (Department of Astronomy, Space Science and Geology, Chungnam National University)
  • Received : 2022.06.28
  • Accepted : 2023.07.31
  • Published : 2023.12.30

Abstract

The remote sensing technique of measuring the magnetic field was applied first to sunspots by Hale (1908). Later Babcock (1961) showed that the solar surface magnetic field on a global scale is a dipole in first-order approximation and that this dipole field reverses once every solar cycle. The Wilcox Solar Observatory (WSO) supplies the spherical harmonics coefficients of the solar corona magnetic field of each Carrington Rotation, calculated based on the remotely-sensed photospheric magnetic field of the solar surface. To infer the internal current system producing the global solar coronal magnetic field structure and evolution of the Sun, we calculate the multipole components of the solar magnetic field using the WSO data from 1976 to 2019. The prominent cycle components over the last 4 solar activity cycles are axis-symmetric fields of the dipole and octupole. This implies that the current inversion driving the solar magnetic field reversal originates from the equatorial region and spreads to the whole globe. Thus, a more accurate solar dynamo model must include an explanation of the origin and evolution of such solar internal current dynamics.

Keywords

Acknowledgement

The authors thank Dr. Hoeksema for providing us the harmonic coefficients of the PFSS model, and Wilcox Solar Observatory data used in this study were obtained via the website http://wso.stanford.edu. This work has been supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A01063976) and (NRF-2022R1A2C1092602).

References

  1. Altschuler, M. D., & Newkirk, G. 1969, Sol. Phys., 9, 131 
  2. Babcock, H. D. 1959, ApJ, 130, 364 
  3. Babcock, H. W. 1961, ApJ, 133, 572
  4. Bravo, S., Stewart, G. A., & Blanco-Cano, X. 1998, Sol. Phys., 179, 223 
  5. Bushby, P., & Mason, J. 2004, Astron. Geophys., 45, 4.07 
  6. Cameron, R. H., Dikpati, M., & Brandenburg, A. 2017, Space Sci. Rev., 210, 367 
  7. Charbonneau, P. 2020, Living Rev. Sol. Phys., 17, 4 
  8. Duvall, T. L., J. 1978, PhD thesis, Stanford University, California 
  9. Hale, G. E. 1908, ApJ, 28, 315 
  10. Hathaway, D. H., & Rightmire, L. 2011, ApJ, 729, 80 
  11. Hoeksema, J. T. 1984, PhD thesis, Stanford University, California 
  12. Hoeksema, J. T., & Scherrer, P. H. 1986, Solar magnetic field, 1976 through 1985: an atlas of photospheric magnetic field observations and computed coronal magnetic fields from the John M. Wilcox Solar Observatory at Sanford, 1976-1985 
  13. Kim, B., Lee, J., Yi, Y., & Oh, S. 2015, Adv. Space Res., 55, 401 
  14. Kitchatinov, L., & Khlystova, A. 2021, ApJ, 919, 36 
  15. Leighton, R. B. 1964, ApJ, 140, 1547 
  16. Lopes, I., & Passos, D. 2009, MNRAS, 397, 320 
  17. Obridko, V. N., Sokoloff, D. D., Shelting, B. D., Shibalova, A. S., & Livshits, I. M. 2020, MNRAS, 492, 5582 
  18. Parker, E. N. 1955, ApJ, 122, 293 
  19. Petrie, G. J. D. 2013, ApJ, 768, 162 
  20. Scherrer, P. H., Wilcox, J. M., Svalgaard, L., et al. 1977, Sol. Phys., 54, 353 
  21. Schussler, M., & Cameron, R. H. 2018, A&A, 618, A89 
  22. Sokoloff, D. 2004, Sol. Phys., 224, 145 
  23. Tobias, S. M. 2002, Philos. Trans. Royal Soc. A, 360, 2741 
  24. Virtanen, I. I., & Mursula, K. 2014, ApJ, 781, 99 
  25. Zeeman, P. 1897, Nature, 55, 347