DOI QR코드

DOI QR Code

Corrosion Behavior of Bimetal Materials (Fe-Ni / Fe-Ni-Mo) for Electromagnetic Switches

전자 개폐기용 바이메탈 소재(Fe-Ni / Fe-Ni-Mo)의 부식거동

  • Yu-Jeong An (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Eun-Hye Hwang (Korea Institute of Industrial Technology) ;
  • Jae-Yeol Jeon (Korea Institute of Industrial Technology) ;
  • Sung Jin Kim (Department of Advanced Materials Science and Engineering, Sunchon National University)
  • 안유정 (순천대학교 신소재공학과) ;
  • 황은혜 (한국생산기술연구원) ;
  • 전재열 (한국생산기술연구원) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2023.09.19
  • Accepted : 2023.09.28
  • Published : 2023.12.29

Abstract

This study examined the corrosion behavior of bimetal materials composed of Fe-Ni alloy and Fe-Ni-Mo alloy, both suitable for use in electromagnetic switches. Electrochemical polarization and weight loss measurements revealed that, in contrast to Fe-Ni alloy, which exhibited pseudo-passivity behavior, Fe-Ni-Mo alloy had higher anodic current density, displaying only active dissolution and greater weight loss. This indicated a lower corrosion resistance in the Fe-Ni-Mo alloy. Equilibrium calculations for the phase fraction of precipitates suggested that the addition of 1 wt% Mo may lead to the formation of second-phase precipitates, such as Laves and M6C, in the γ matrix. These precipitates might degrade the homogeneity of the passive film formed on the surface, leading to localized attacks during the corrosion process. Therefore, considering the differences in corrosion kinetics between these bimetal materials, the early degradation caused by galvanic corrosion should be prevented by designing a new alloy, optimizing heat treatment, or implementing periodic in-service maintenance.

Keywords

Acknowledgement

This research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255).

References

  1. P. Chen, H. G. Huang, C. Ji, X. Zhang, and Z. H. Sun, Bonding strength of Invar/Cu clad strips fabricated by twin-roll casting process, Transactions of Nonferrous Metals Society of China, 28, 2460 (2018). Doi: https://doi.org/10.1016/S1003-6326(18)64892-7
  2. H. Liu, Z. Sun, G. Wang, X. Sun, J. Li, F. Xue, H. Peng, and Y. Zhang, Effect of aging on microstructures and properties of Mo-alloyed Fe-36Ni invar alloy, Materials Science and Engineering: A, 654, 107 (2016). Doi: https://doi.org/10.1016/j.msea.2015.12.018
  3. S. S. Park, D. S. Bae, J. H. Lee, and D. H. Bae, Development of new bimetal material for home appliances by using the rolling process, Transactions of Materials Processing, 16, 375 (2007). Doi: https://doi.org/10.5228/KSPP.2007.16.5.375
  4. H. Sano, K. Kobayashi, S. Hata, Y. Honda, R. Inoue and Y. Oda, Metal Materials for Environmentally Compatible Technologies (2018). https://www.hitachi.com/rev/archive/2018/r2018_01/pdf/P110-116_R1b03
  5. Kanthal, Thermostatic Bimetal Hand book (2008). https://www.ibt.co.il/uploaded_files/documents/Kanthal_Thermostatic_Bimetal_U3743
  6. Attleboro, Hamburg, Baoying, and Jiangsu, Thermostatic Bimetal Designer's Guide (2018). https://www.emsclad.com/fileadmin/Data/Divisions/EMS/Header/Bimetal_Desingers_Guide
  7. H. Liu, Z. Jin, Z. Wang, H. Liu, G. Meng, and H. Liu, Corrosion inhibition of deposit-covered X80 pipeline steel in seawater containing pseudomonas stutzeri, Bioelectrochemistry, 149, 108279 (2023). Doi: https://doi.org/10.1016/j.bioelechem.2022.108279
  8. M. A. M. Ahssi, M. A. Erden, M. Acarer, and H. Cug, The effect of nickel on the microstructure, mechanical properties and corrosion properties of niobium-vanadium microalloyed powder metallurgy steels, Materials, 13, 4021 (2020). Doi: https://doi.org/10.3390/ma13184021
  9. E. Sikora and D. D. Macdonald, Nature of the passive film on nickel, Electrochimica Acta, 48, 69 (2002). Doi: https://doi.org/10.1016/S0013-4686(02)00552-2
  10. Y. S. Kim and Y. S. Park, A study on effects of Mo addition on the corrosion resistance of stainless steels, Corrosion Science and Technology, 18, 67 (1989). https://www.jcst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00180200067
  11. K. S. Kim, H. Y. Chang, and Y. S. Kim, Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless steel, Corrosion Science and Technology, 2, 75 (2003). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00020200075
  12. W. Yang, R. C. Ni, H. Z. Hua, and A. Pourbaix, The behavior of chromium and molybdenum in the propagation process of localized corrosion of steels, Corrosion Science, 24, 691 (1984). Doi: https://doi.org/10.1016/0010-938X(84)90059-3
  13. Ya. M. Kolotyrkin, The electrochemistry of alloys, Electrochimica Acta, 25, 89 (1980). Doi: https://doi.org/10.1016/0013-4686(80)80055-7
  14. A. Irhzo, Y. Segui, N. Bui, and F. Dabosi, On the Conduction Mechanisms of Passive Films on Molybdenum-Containing Stainless Steel, Corrosion, 42, 141 (1986). Doi: https://doi.org/10.5006/1.3584893
  15. J. H. Gettersen and J. H. W. De. Wit, The role of molybdenum in the active-passive transition of iron-chromium alloys, Electrochimica Acta, 36, 1465 (1991). Doi: https://doi.org/10.1016/0013-4686(91)85335-5
  16. Y. S. Kim, Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels, Corrosion Science and Technology, 9, 20 (2010). https://www.jcst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00090100020 100020
  17. Z. Wang, Z. Q. Zhou, L. Zhang, J. Y. Hu, Z. R. Zhang, and M. X. Lu, Effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel, Acta Metallurgica Sinica, 32, 585 (2018). Doi: https://doi.org/10.1007/s40195-018-0794-5
  18. Q. S. Sui, J. X. Li, Y. Z. Zhai, Z. H. Sun, Y. F. Wu, H. T. Zhao, J. H. Feng, M. C. Sun, C. L. Yang, B. A. Chen, and H. F. Peng, Effect of alloying with V and Ti on microstructures and properties in Fe-Ni-Mo-C invar alloys, Materialia, 8 100474 (2019). Doi: https://doi.org/10.1016/j.mtla.2019.100474
  19. C. S. Kim, M. S. pp. 15 - 47, Kyungpook National University, Kyungpook (1995).
  20. S. G. K. Manikandan, D. Sivakumar, K. P. Rao, and M. Kamaraj, Laves phase in alloy 718 fusion zone - microscopic and calorimetric studiesm, Materials Characterization, 100, 192 (2015). Doi: https://doi.org/10.1016/j.matchar.2014.11.035
  21. W. Wang, Z. Chen, W. Lu, F. Meng, and T. Zhao, Heat treatment for selective laser melting of Inconel 718 alloy with simultaneously enhanced tensile strength and fatigue properties, Journal of Alloys and Compounds, 913, 165171 (2022). Doi: https://doi.org/10.1016/j.jallcom.2022.165171