DOI QR코드

DOI QR Code

Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes

전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향

  • Jeong-Myeong Yoon (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Cheol-Min Park (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 윤정명 (금오공과대학교 신소재공학과) ;
  • 박철민 (금오공과대학교 신소재공학과)
  • Received : 2023.10.28
  • Accepted : 2023.11.25
  • Published : 2023.12.29

Abstract

The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering the potential to address these issues. By employing nonflammable solid electrolytes and utilizing high-capacity electrode materials, ASSBs have demonstrated improved safety and energy density. Automotive and energy storage industries, in particular, have recognized the significance of advancing ASSB technology. Although the use of Li metal as ASSB anode is promising due to its high theoretical capacity and the expectation that Li dendrites will not form in solid electrolytes, persistent problems with Li dendrite formation during cycling remain. Therefore, the exploration of novel high-performance anode materials for ASSBs is highly important. Recent research has focused extensively on alloy-based anodes for ASSBs, owing to their advantages of no dendrite formation and high-energy density. This study provides a comprehensive review of the latest advancements and challenges associated with alloy-based anodes for ASSBs.

Keywords

Acknowledgement

This research was supported by Kumoh National Institute of Technology (2021).

References

  1. D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, I. Hunt, T. J. Mason, J. Millichamp, M. D. Michiel, G. J. Offer, G. Hinds, D. J. L. Brett, P. R. Shearing, In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nature Communications, 6, 6924 (2015). Doi: https://doi.org/10.1038/ncomms7924
  2. K. Takada, T. Inada, A. Kajiyama, M. Kouguchi, H. Sasaki, S. Kondo, Y. Michiue, S. Nakano, M. Tabuchi, M. Watanabe, Solid state batteries with sulfide-based solid electrolytes, Solid State Ionics, 172, 25 (2004). Doi: https://doi.org/10.1016/j.ssi.2004.02.027
  3. J. B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, 135, 1167 (2013). Doi: https://doi.org/10.1021/ja3091438
  4. Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries, Nature Reviews Materials, 5, 229 (2020). Doi: https://doi.org/10.1038/s41578-019-0165-5
  5. J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, S.-H. Lee, Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries, Electrochemistry Communications, 11, 1830 (2009). Doi: https://doi.org/10.1016/j.elecom.2009.07.028
  6. A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nature reviews materials, 2, 16103 (2017). Doi: https://doi.org/10.1038/natrevmats.2016.103
  7. Y. Lu, C.-Z. Zhao, J.-K. Hu, S. Sun, Q. Zhang, The void formation behaviors in working solid-state Li metal batteries, Science Advances, 8, eadd0510 (2022). Doi: https://doi.org/10.1126/sciadv.add0510
  8. J. Kasemchainan, S. Zekoll, D. S. Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nature Materials, 18, 1105 (2019). Doi: https://doi.org/10.1038/s41563-019-0438-9
  9. S. Yu, D. J. Siegel, Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes, ACS Applied Materials & Interfaces, 10, 38151 (2018). Doi: https://doi.org/10.1021/acsami.8b17223
  10. C. Zor, S. H. Turrell, M. S. Uyanik, S. Afyon, Lithium Plating and Stripping: Toward Anode-FreeSolid-State Batteries, Advanced Energy & Sustainability Research, 2300001 (2023). Doi: https://doi.org/10.1002/aesr.202300001
  11. F. N. Jiang, S. J. Yang, H. Liu, X.-B. Cheng, L. Liu, R. Xiang, Q. Zhang, S. Kaskel, J. Q. Huang, Mechanism understanding for stripping electrochemistry of Li metal anode, SusMat, 1, 506 (2021). Doi: https://doi.org/10.1002/sus2.37
  12. C. Yang, H. Xie, W. Ping, K. Fu, B. Liu, J. Rao, J. Dai, C. Wang, G. Pastel, L. Hu, An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Advanced Materials, 31, 1804815 (2019). Doi: https://doi.org/10.1002/adma.201804815
  13. Y. Lu, C.-Z. Zhao, H. Yuan, X.-B. Cheng, J.-Q. Huang, Q. Zhang, Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies, Advanced Functional Materials, 31, 2009925 (2021). Doi: https://doi.org/10.1002/adfm.202009925
  14. K. Takada, T. Inada, A. Kajiyama, H. sasaki, S. Kondo, M. Watanabe, M. Murayama, R. Kanno, Solid-state lithium battery with graphite anode, Solid State Ionics, 158, 269 (2003). Doi: https://doi.org/10.1016/S0167-2738(02)00823-8
  15. N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki, Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification, Advanced Materials, 18, 2226 (2006). Doi: https://doi.org/10.1002/adma.200502604
  16. L. Holtschi, C. N. Borca, T. Huthwelker, F. Marone, C. M. Schleputz, V.Pele, C. Jordy, C. Villevieille, M. E. Kazzi, P. Novak, Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries, Electrochimica Acata, 389, 138735 (2021). Doi: https://doi.org/10.1016/j.electacta.2021.138735
  17. H. Wang, Y. Zhu, S. C. Kim, A. Pei, Y. Li, D. T. Boyle, H. Wang, Z. Zhang, Y. Ye, W. Huang, Y. Liu, J. Xu, J. Li, F. Liu, Y. Cui, Underpotential lithium plating on graphite anodes caused by temperature heterogeneity, Proceedings of the National Academy of Sciences, 117, 29453 (2020). Doi: https://doi.org/10.1073/pnas.2009221117
  18. T. Waldmann, B.-I. Hogg, M. Wohlfahrt-Mehrens, Li plating as unwanted side reaction in commercial Li-ion cells - A review, Journal of Power Sources, 384, 107 (2018). Doi: https://doi.org/10.1016/j.jpowsour.2018.02.063
  19. N. Suzuki, N. Yashiro, S. Fujiki, R. Omoda, T. Shiratsuchi, T. Watanabe, Y. Aihara, Highly Cyclable All-SolidState Battery with Deposition-Type Lithium Metal Anode Based on Thin Carbon Black Layer, Advanced Energy & Sustainability Research, 2, 210066 (2021). Doi: https://doi.org/10.1002/aesr.202100066
  20. J. G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M. J. Choi, H. Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries, Journal of Power Sources, 282, 299 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.02.054
  21. C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39, 3115 (2010). Doi: https://doi.org/10.1039/B919877F
  22. M. N. Obrovac, V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114, 11444 (2014). Doi: https://doi.org/10.1021/cr500207g
  23. Y. Huang, B. Shao, F. Han, Li alloy anodes capacity for high-rate and high-areal-solid-state batteries, Journal of Materials Chemistry A, 10, 12350 (2022). Doi: https://doi.org/10.1039/D2TA02339C
  24. A. L. Santhosha, L. Medenbach, J. R. Buchheim, P. Adelhelm, The Indium-Lithium electrode in solid-state lithium ion batteries: Phase formation, redox potentials and interface stability, Batteries & Supercaps, 2, 524 (2019). Doi: https://doi.org/10.1002/batt.201800149
  25. Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou, Z.-H. Fu, X. Chen, J.-Q. Huang, Q. Zhang, The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes, Science advances, 7, eabi5520 (2021). Doi: https://doi.org/10.1126/sciadv.abi5520
  26. D. Cao, X. Sun, Y. Li, A. Anderson, W. Lu, H. Zhu, L Long-Cycling Sulfide-Based All-Solid-State Batteries Enabled by Electrochemo-Mechanically Stable Electrodes, Advanced Materials, 34, 2200401 (2022). Doi: https://doi.org/10.1002/adma.202200401
  27. S. Luo, Z. Wang, X. Li, X. Liu, H. Wang, W. Ma, L. Zhang, L. Zhu, X. Zhang, Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes, Nature Communications, 12, 6968 (2021). Doi: https://doi.org/10.1038/s41467-021-27311-7
  28. H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang, P. Wang, P. He, H. Zhou, Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability, Science Advances, 8, eabn4372 (2022). Doi: https://doi.org/10.1126/sciadv.abn4372
  29. Y. Liu, C. Wang, S. G. Yoon, S. Y. Han, J. A. Lewis, D. Prakash, E. J. Klein, T. Chen, D. H. Kang, D. Majumdar, R. Gopalaswamy, M. T. McDowell, Alluminum foil negative electrodes with multiphase microstructure for allsolid-state Li-ion batteries, Nature Communications, 14, 3975 (2023). Doi: https://doi.org/10.1038/s41467-023-39685-x
  30. C. Hansel, B. Singh, P. Canepa, D. Kundu, Favorable Interfacial Chemomechanics Enables Stable Cycling of High Li-Content Li-In/Sn Anodes in Sulfide Electrolyte Based Solid-State Batteries, Chemistry of Materials, 33, 6029 (2021). Doi: https://doi.org/10.1021/acs.chemmater.1c01431
  31. R. Kanno, M. Murayama, T. Inada, T. Kobayashi, K. Sakamoto, N. Sonoyama, A. Yamada, S. Kondo, A Self-Assembled Breathing Interface for All-Solid-State Ceramic Lithium Batteries, Electrochemical and solid-state letters, 7, A455 (2004). Doi: https://doi.org/10.1149/1.1809553
  32. T. kobayashi, A. yamada, R. Kanno, Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON, Electrochimica Acta, 53, 5045 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.01.071
  33. C. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker, Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries, Electrochimica Acta, 215, 93 (2016). Doi: https://doi.org/10.1016/j.electacta.2016.08.081
  34. Q. Yang, C. Li, Li metal batteries and solid state batteries benefiting from halogen-based strategies, Energy Storage Materials, 14, 100 (2018). Doi: https://doi.org/10.1016/j.ensm.2018.02.017
  35. H. J. Bang, S. Kim, J. Prakash, Electrochemical investigations of lithium-aluminum alloy anode in Li/polymer cells, Journal of Power Sources, 92, 45 (2001). Doi: https://doi.org/10.1016/S0378-7753(00)00522-X
  36. H. Wang, H. Tan, X. Luo, H, Wang, T. Ma, M. Lv, X. Song, S. Jin, X. Chang, X. Li, The progress on aluminum-based anode materials for lithium-ion batteries, Journal of Materials Chemistry A, 8, 25649 (2020). Doi: https://doi.org/10.1039/D0TA09762D
  37. J. Gu, Z. Liang, J. Shi, Y. Yang, Electrochemo-Mechanical Stresses and Their Measurements in Sulfide-Based All-Solid-State Batteries: A Review, Advanced Energy Materials, 13, 2203153 (2023). Doi: https://doi.org/10.1002/aenm.202203153
  38. S. Y. Han, C. Lee, J. A. Lewis, D. Yeh, Y. Liu, H.-W. Lee, M. T. McDowell, Stress evolution during cycling of alloy-anode solid-state batteries, Joule, 5, 2450 (2021). Doi: https://doi.org/10.1016/j.joule.2021.07.002
  39. C. Chen, M. Jiang, T. Zhou, L. Raijmakers, E. Vezhlev, B. Wu, T. U. Schulli, D. L. Danilov, Y. Wei, R.-A. Eichel, P. H. L. Notten, Interface Aspects in All-Solid-State Li-Based Batteries Reviewed, Advanced Energy Materials, 11, 2003939 (2021). Doi: https://doi.org/10.1002/aenm.202003939
  40. U. Kasavajjula, C. Wang, A. J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, Journal of Power Sources, 163, 1003 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.084
  41. H. Kim, M. Seo, M.-H. Park, J. Cho, A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries, Angewandte Chemie International Edition, 49, 2146 (2010). Doi: https://doi.org/10.1002/anie.200906287
  42. Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Advanced Energy Materials, 7, 1700715 (2017). Doi: https://doi.org/10.1002/aenm.201700715
  43. D. H. S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan, J.-M. Doux, W. Li, B. Lu, S.-Y. Ham, B. Sayahpour, J. Scharf, E. A. Wu, G. Deysher, H. E. Han, H. J. Hah, H. Jeong, J. B. Lee, Z. Chen, Y. S. Meng, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 373, 1494 (2021). Doi: https://doi.org/10.1126/science.abg7217
  44. W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, M. Yang, X. Zhu, Y. Xia, S. Shi, L. Chen, H. Li, F. Wu, Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries, Nature Energy, 8, 800 (2023). Doi: https://doi.org/10.1038/s41560-023-01279-8
  45. R. Miyazaki, T. Hihara, Charge-discharge performances of Sn powder as a high capacity anode for all-solid-state lithium batteries, Journal of Powder Sources, 427, 15 (2019). Doi: https://doi.org/10.1016/j.jpowsour.2019.04.068
  46. G. Maresca, A. Tsurumaki, N. Suzuki, K. Yoshida, S. Panero, Y. Aihara, M. A. Navarra, Sn/C composite anodes for bulk-type all-solid-state batteries, Electrochimica Acta, 395, 139104 (2021). Doi: https://doi.org/10.1016/j.electacta.2021.139104
  47. T. Palaniselvam, A. I. Freytag, H. Moon, K. A. Janssen, S. Passerini, P. Adelhelm, Tin-Graphite Composite as a High-Capacity Anode for All-Solid-State Li-Ion Batteries, The Journal of Physical Chemistry C, 126, 13043 (2022). Doi: https://doi.org/10.1021/acs.jpcc.2c04024
  48. S. M. Beladi-Mousavi, M. Pumera, 2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability, Chemical Society Reviews, 47, 6964 (2018). Doi: https://doi.org/10.1039/C8CS00425K
  49. C.-M. Park, H.-J. Sohn, Black Phosphorus and its Composite for Lithium Rechargeable Batteries, Advanced Materials, 19, 2465 (2007). Doi: https://doi.org/10.1002/adma.200602592
  50. J. Yang, F. Mo, L. Huang, H. Liang, G. Sun, S. Peng, Building a C-P bond to unlock the reversible and fast lithium storage performance of black phosphorus in all-solid-state lithium-ion batteries, Materials Today Energy, 20, 100662 (2021). Doi: https://doi.org/10.1016/j.mtener.2021.100662
  51. S. Afyon, K. V. Kravchyk, S. Wang, J. van den Broek, C. Hansel, M. V. Kovalenko, J. L. M. Rupp, Building better allsolid-state batteries with Li garnet solid electrolytes and metalloid anodes, Journal of Materials Chemistry A, 7, 21299 (2019). Doi: https://doi.org/10.1039/C9TA04999A
  52. F. Mo, J. Ruan, W. Fu, B. Fu, J. Hu, Z. Lian, S. Li, Y. Song, Y.-N. Zhou, F. Fang, G. Sun, S. Peng, D. Sun, Revealing the Role of Liquid Metals at the Anode-Electrolyte Interface for All Solid-State Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 12, 38232 (2020). https://doi.org/10.1021/acsami.0c11001
  53. K. Sharma, R. Singh, T. Ichikawa, M. Kumar, A. Jain, Lithiation mechanism of antimony chalcogenides (Sb2X3; X = S, Se, Te) electrodes for high-capacity all-solid-state Li-ion battery, International Journal of Energy Research, 45, 11135 (2021). Doi: https://doi.org/10.1002/er.6596