Acknowledgement
This research was supported by Kumoh National Institute of Technology (2021).
References
- D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, I. Hunt, T. J. Mason, J. Millichamp, M. D. Michiel, G. J. Offer, G. Hinds, D. J. L. Brett, P. R. Shearing, In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nature Communications, 6, 6924 (2015). Doi: https://doi.org/10.1038/ncomms7924
- K. Takada, T. Inada, A. Kajiyama, M. Kouguchi, H. Sasaki, S. Kondo, Y. Michiue, S. Nakano, M. Tabuchi, M. Watanabe, Solid state batteries with sulfide-based solid electrolytes, Solid State Ionics, 172, 25 (2004). Doi: https://doi.org/10.1016/j.ssi.2004.02.027
- J. B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, 135, 1167 (2013). Doi: https://doi.org/10.1021/ja3091438
- Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries, Nature Reviews Materials, 5, 229 (2020). Doi: https://doi.org/10.1038/s41578-019-0165-5
- J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, S.-H. Lee, Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries, Electrochemistry Communications, 11, 1830 (2009). Doi: https://doi.org/10.1016/j.elecom.2009.07.028
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nature reviews materials, 2, 16103 (2017). Doi: https://doi.org/10.1038/natrevmats.2016.103
- Y. Lu, C.-Z. Zhao, J.-K. Hu, S. Sun, Q. Zhang, The void formation behaviors in working solid-state Li metal batteries, Science Advances, 8, eadd0510 (2022). Doi: https://doi.org/10.1126/sciadv.add0510
- J. Kasemchainan, S. Zekoll, D. S. Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nature Materials, 18, 1105 (2019). Doi: https://doi.org/10.1038/s41563-019-0438-9
- S. Yu, D. J. Siegel, Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes, ACS Applied Materials & Interfaces, 10, 38151 (2018). Doi: https://doi.org/10.1021/acsami.8b17223
- C. Zor, S. H. Turrell, M. S. Uyanik, S. Afyon, Lithium Plating and Stripping: Toward Anode-FreeSolid-State Batteries, Advanced Energy & Sustainability Research, 2300001 (2023). Doi: https://doi.org/10.1002/aesr.202300001
- F. N. Jiang, S. J. Yang, H. Liu, X.-B. Cheng, L. Liu, R. Xiang, Q. Zhang, S. Kaskel, J. Q. Huang, Mechanism understanding for stripping electrochemistry of Li metal anode, SusMat, 1, 506 (2021). Doi: https://doi.org/10.1002/sus2.37
- C. Yang, H. Xie, W. Ping, K. Fu, B. Liu, J. Rao, J. Dai, C. Wang, G. Pastel, L. Hu, An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Advanced Materials, 31, 1804815 (2019). Doi: https://doi.org/10.1002/adma.201804815
- Y. Lu, C.-Z. Zhao, H. Yuan, X.-B. Cheng, J.-Q. Huang, Q. Zhang, Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies, Advanced Functional Materials, 31, 2009925 (2021). Doi: https://doi.org/10.1002/adfm.202009925
- K. Takada, T. Inada, A. Kajiyama, H. sasaki, S. Kondo, M. Watanabe, M. Murayama, R. Kanno, Solid-state lithium battery with graphite anode, Solid State Ionics, 158, 269 (2003). Doi: https://doi.org/10.1016/S0167-2738(02)00823-8
- N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki, Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification, Advanced Materials, 18, 2226 (2006). Doi: https://doi.org/10.1002/adma.200502604
- L. Holtschi, C. N. Borca, T. Huthwelker, F. Marone, C. M. Schleputz, V.Pele, C. Jordy, C. Villevieille, M. E. Kazzi, P. Novak, Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries, Electrochimica Acata, 389, 138735 (2021). Doi: https://doi.org/10.1016/j.electacta.2021.138735
- H. Wang, Y. Zhu, S. C. Kim, A. Pei, Y. Li, D. T. Boyle, H. Wang, Z. Zhang, Y. Ye, W. Huang, Y. Liu, J. Xu, J. Li, F. Liu, Y. Cui, Underpotential lithium plating on graphite anodes caused by temperature heterogeneity, Proceedings of the National Academy of Sciences, 117, 29453 (2020). Doi: https://doi.org/10.1073/pnas.2009221117
- T. Waldmann, B.-I. Hogg, M. Wohlfahrt-Mehrens, Li plating as unwanted side reaction in commercial Li-ion cells - A review, Journal of Power Sources, 384, 107 (2018). Doi: https://doi.org/10.1016/j.jpowsour.2018.02.063
- N. Suzuki, N. Yashiro, S. Fujiki, R. Omoda, T. Shiratsuchi, T. Watanabe, Y. Aihara, Highly Cyclable All-SolidState Battery with Deposition-Type Lithium Metal Anode Based on Thin Carbon Black Layer, Advanced Energy & Sustainability Research, 2, 210066 (2021). Doi: https://doi.org/10.1002/aesr.202100066
- J. G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M. J. Choi, H. Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries, Journal of Power Sources, 282, 299 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.02.054
- C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39, 3115 (2010). Doi: https://doi.org/10.1039/B919877F
- M. N. Obrovac, V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114, 11444 (2014). Doi: https://doi.org/10.1021/cr500207g
- Y. Huang, B. Shao, F. Han, Li alloy anodes capacity for high-rate and high-areal-solid-state batteries, Journal of Materials Chemistry A, 10, 12350 (2022). Doi: https://doi.org/10.1039/D2TA02339C
- A. L. Santhosha, L. Medenbach, J. R. Buchheim, P. Adelhelm, The Indium-Lithium electrode in solid-state lithium ion batteries: Phase formation, redox potentials and interface stability, Batteries & Supercaps, 2, 524 (2019). Doi: https://doi.org/10.1002/batt.201800149
- Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou, Z.-H. Fu, X. Chen, J.-Q. Huang, Q. Zhang, The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes, Science advances, 7, eabi5520 (2021). Doi: https://doi.org/10.1126/sciadv.abi5520
- D. Cao, X. Sun, Y. Li, A. Anderson, W. Lu, H. Zhu, L Long-Cycling Sulfide-Based All-Solid-State Batteries Enabled by Electrochemo-Mechanically Stable Electrodes, Advanced Materials, 34, 2200401 (2022). Doi: https://doi.org/10.1002/adma.202200401
- S. Luo, Z. Wang, X. Li, X. Liu, H. Wang, W. Ma, L. Zhang, L. Zhu, X. Zhang, Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes, Nature Communications, 12, 6968 (2021). Doi: https://doi.org/10.1038/s41467-021-27311-7
- H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang, P. Wang, P. He, H. Zhou, Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability, Science Advances, 8, eabn4372 (2022). Doi: https://doi.org/10.1126/sciadv.abn4372
- Y. Liu, C. Wang, S. G. Yoon, S. Y. Han, J. A. Lewis, D. Prakash, E. J. Klein, T. Chen, D. H. Kang, D. Majumdar, R. Gopalaswamy, M. T. McDowell, Alluminum foil negative electrodes with multiphase microstructure for allsolid-state Li-ion batteries, Nature Communications, 14, 3975 (2023). Doi: https://doi.org/10.1038/s41467-023-39685-x
- C. Hansel, B. Singh, P. Canepa, D. Kundu, Favorable Interfacial Chemomechanics Enables Stable Cycling of High Li-Content Li-In/Sn Anodes in Sulfide Electrolyte Based Solid-State Batteries, Chemistry of Materials, 33, 6029 (2021). Doi: https://doi.org/10.1021/acs.chemmater.1c01431
- R. Kanno, M. Murayama, T. Inada, T. Kobayashi, K. Sakamoto, N. Sonoyama, A. Yamada, S. Kondo, A Self-Assembled Breathing Interface for All-Solid-State Ceramic Lithium Batteries, Electrochemical and solid-state letters, 7, A455 (2004). Doi: https://doi.org/10.1149/1.1809553
- T. kobayashi, A. yamada, R. Kanno, Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON, Electrochimica Acta, 53, 5045 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.01.071
- C. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker, Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries, Electrochimica Acta, 215, 93 (2016). Doi: https://doi.org/10.1016/j.electacta.2016.08.081
- Q. Yang, C. Li, Li metal batteries and solid state batteries benefiting from halogen-based strategies, Energy Storage Materials, 14, 100 (2018). Doi: https://doi.org/10.1016/j.ensm.2018.02.017
- H. J. Bang, S. Kim, J. Prakash, Electrochemical investigations of lithium-aluminum alloy anode in Li/polymer cells, Journal of Power Sources, 92, 45 (2001). Doi: https://doi.org/10.1016/S0378-7753(00)00522-X
- H. Wang, H. Tan, X. Luo, H, Wang, T. Ma, M. Lv, X. Song, S. Jin, X. Chang, X. Li, The progress on aluminum-based anode materials for lithium-ion batteries, Journal of Materials Chemistry A, 8, 25649 (2020). Doi: https://doi.org/10.1039/D0TA09762D
- J. Gu, Z. Liang, J. Shi, Y. Yang, Electrochemo-Mechanical Stresses and Their Measurements in Sulfide-Based All-Solid-State Batteries: A Review, Advanced Energy Materials, 13, 2203153 (2023). Doi: https://doi.org/10.1002/aenm.202203153
- S. Y. Han, C. Lee, J. A. Lewis, D. Yeh, Y. Liu, H.-W. Lee, M. T. McDowell, Stress evolution during cycling of alloy-anode solid-state batteries, Joule, 5, 2450 (2021). Doi: https://doi.org/10.1016/j.joule.2021.07.002
- C. Chen, M. Jiang, T. Zhou, L. Raijmakers, E. Vezhlev, B. Wu, T. U. Schulli, D. L. Danilov, Y. Wei, R.-A. Eichel, P. H. L. Notten, Interface Aspects in All-Solid-State Li-Based Batteries Reviewed, Advanced Energy Materials, 11, 2003939 (2021). Doi: https://doi.org/10.1002/aenm.202003939
- U. Kasavajjula, C. Wang, A. J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, Journal of Power Sources, 163, 1003 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.084
- H. Kim, M. Seo, M.-H. Park, J. Cho, A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries, Angewandte Chemie International Edition, 49, 2146 (2010). Doi: https://doi.org/10.1002/anie.200906287
- Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Advanced Energy Materials, 7, 1700715 (2017). Doi: https://doi.org/10.1002/aenm.201700715
- D. H. S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan, J.-M. Doux, W. Li, B. Lu, S.-Y. Ham, B. Sayahpour, J. Scharf, E. A. Wu, G. Deysher, H. E. Han, H. J. Hah, H. Jeong, J. B. Lee, Z. Chen, Y. S. Meng, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 373, 1494 (2021). Doi: https://doi.org/10.1126/science.abg7217
- W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, M. Yang, X. Zhu, Y. Xia, S. Shi, L. Chen, H. Li, F. Wu, Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries, Nature Energy, 8, 800 (2023). Doi: https://doi.org/10.1038/s41560-023-01279-8
- R. Miyazaki, T. Hihara, Charge-discharge performances of Sn powder as a high capacity anode for all-solid-state lithium batteries, Journal of Powder Sources, 427, 15 (2019). Doi: https://doi.org/10.1016/j.jpowsour.2019.04.068
- G. Maresca, A. Tsurumaki, N. Suzuki, K. Yoshida, S. Panero, Y. Aihara, M. A. Navarra, Sn/C composite anodes for bulk-type all-solid-state batteries, Electrochimica Acta, 395, 139104 (2021). Doi: https://doi.org/10.1016/j.electacta.2021.139104
- T. Palaniselvam, A. I. Freytag, H. Moon, K. A. Janssen, S. Passerini, P. Adelhelm, Tin-Graphite Composite as a High-Capacity Anode for All-Solid-State Li-Ion Batteries, The Journal of Physical Chemistry C, 126, 13043 (2022). Doi: https://doi.org/10.1021/acs.jpcc.2c04024
- S. M. Beladi-Mousavi, M. Pumera, 2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability, Chemical Society Reviews, 47, 6964 (2018). Doi: https://doi.org/10.1039/C8CS00425K
- C.-M. Park, H.-J. Sohn, Black Phosphorus and its Composite for Lithium Rechargeable Batteries, Advanced Materials, 19, 2465 (2007). Doi: https://doi.org/10.1002/adma.200602592
- J. Yang, F. Mo, L. Huang, H. Liang, G. Sun, S. Peng, Building a C-P bond to unlock the reversible and fast lithium storage performance of black phosphorus in all-solid-state lithium-ion batteries, Materials Today Energy, 20, 100662 (2021). Doi: https://doi.org/10.1016/j.mtener.2021.100662
- S. Afyon, K. V. Kravchyk, S. Wang, J. van den Broek, C. Hansel, M. V. Kovalenko, J. L. M. Rupp, Building better allsolid-state batteries with Li garnet solid electrolytes and metalloid anodes, Journal of Materials Chemistry A, 7, 21299 (2019). Doi: https://doi.org/10.1039/C9TA04999A
- F. Mo, J. Ruan, W. Fu, B. Fu, J. Hu, Z. Lian, S. Li, Y. Song, Y.-N. Zhou, F. Fang, G. Sun, S. Peng, D. Sun, Revealing the Role of Liquid Metals at the Anode-Electrolyte Interface for All Solid-State Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 12, 38232 (2020). https://doi.org/10.1021/acsami.0c11001
- K. Sharma, R. Singh, T. Ichikawa, M. Kumar, A. Jain, Lithiation mechanism of antimony chalcogenides (Sb2X3; X = S, Se, Te) electrodes for high-capacity all-solid-state Li-ion battery, International Journal of Energy Research, 45, 11135 (2021). Doi: https://doi.org/10.1002/er.6596