DOI QR코드

DOI QR Code

Optimal Electropolishing Condition of Austenitic Stainless Steel Specimens for Slow Strain Rate Tensile Testing

오스테나이트 스테인리스강 저속인장시험편의 최적 전해연마 특성

  • Min-Jae Choi (Materials Safety Technology Research Division, Korea Atomic Energy Research Institute) ;
  • Eun-Byeoul Jo (Materials Safety Technology Research Division, Korea Atomic Energy Research Institute) ;
  • Dong-Jin Kim (Materials Safety Technology Research Division, Korea Atomic Energy Research Institute)
  • 최민재 (한국원자력연구원 재료안전기술연구부) ;
  • 조은별 (한국원자력연구원 재료안전기술연구부) ;
  • 김동진 (한국원자력연구원 재료안전기술연구부)
  • Received : 2023.11.22
  • Accepted : 2023.12.12
  • Published : 2023.12.29

Abstract

Irradiation-assisted stress corrosion cracking (IASCC) is one of the main degradation mechanisms of austenitic stainless steels, which are used as reactor internal materials. Slow strain rate testing (SSRT) has been widely applied to evaluate the IASCC initiation characteristics of proton-irradiated tensile specimens. Tensile specimens require low surface roughness for micro-crack observation, and electropolishing is the most important specimen pre-treatment process used for this. In this study, optimal electropolishing conditions were examined through analyzing results of polarization experiments and surface roughness measurements after electropolishing. Corrosion cell and electropolishing equipment were fabricated for polarization tests and electropolishing experiments using SSRT specimens. The experimental parameters were electropolishing time, current density, electrolyte temperature, and stirring speed. The optimal electropolishing conditions for SSRT tensile specimens made of type 316 stainless steel were evaluated as a polishing time of 180 seconds, a current density of 0.15 A/cm2, an electrolyte temperature of 60 ℃, and a stirring speed of 200 RPM.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2022-00143718).

References

  1. S. S. Hwang, S. W. Kim, D. J. Kim, M. J. Choi, and Y. S. Lim, Material Degradation and its Management of Reactor Internals in PWR, Transactions of the Korean Society of Pressure Vessels and Piping, 12, 1 (2016). Doi: http://dx.doi.org/10.20466/KPVP.2016.12.1.001 
  2. S. S. Hwang, M. J. Choi, S. W. Kim, and D. J. Kim, Review of Factors Affecting IASCC Initiation of Stainless Steel in PWRs : A Korean Study, Corrosion Science and Technology, 20, 210 (2021). Doi: https://doi.org/10.14773/cst.2021.20.4.210 
  3. Y. S. Lim, D. J. Kim, S. S. Hwang, M. J. Choi, and S. W. Cho, Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel, Corrosion Science and Technology, 20, 158 (2021). Doi: https://doi.org/10.14773/cst.2021.20.3.158 
  4. Z. Jiao, J. T. Busby, and G. S. Was, Deformation Microstructure of Proton-irradiated Stainless Steels, Journal of Nuclear Materials, 361, 218 (2007). Doi: https://doi.org/10.1016/j.jnucmat.2006.12.012 
  5. K. J. Stephenson and G. S. Was, Comparison of the Microstructure, Deformation and Crack Initiation Behavior of Austenitic Stainless Steel Irradiated in-reactor or with Protons, Journal of Nuclear Materials, 456, 85 (2015). Doi: https://doi.org/10.1016/j.jnucmat.2014.08.021 
  6. P. Deng, Q. Peng, E. H. Han, W. Ke, and C. Sun, Proton Irradiation Assisted Localized Corrosion and Stress Corrosion Cracking in 304 Nuclear Grade Stainless Steel in Simulated Primary PWR Water, Journal of Materials Science & Technology, 65, 61 (2021). Doi: https://doi.org/10.1016/j.jmst.2020.04.068 
  7. Z. U. Rahman, K. M. Deen, L. Cano, and W. Haider, The Effects of Parametric Changes in Electropolishing Process on Surface Properties of 316L Stainless Steel, Applied Surface Science, 410, 432 (2017). Doi: https://doi.org/10.1016/j.apsusc.2017.03.081 
  8. T. S. Hahn and A. R. Marder, Effect of Electropolishing Variables on the Current Density-Voltage Relationship, Metallography, 21, 365 (1988). Doi: https://doi.org/10.1016/0026-0800(88)90001-8 
  9. J. W. Park, E. S. Lee, and J.B. Song, Proc. Korean Society of Machine Tool Engineers Conf., p. 186, The Korean Society of Manufacturing Technology Engineers (1998). https://koreascience.kr/article/CFKO199811919741031.page 
  10. S. J. Lee and J. J. Lai, The Effects of Electropolishing (EP) Process Parameters on Corrosion Resistance of 316L Stainless Steel, Journal of Materials Processing Technology, 140, 206 (2003). Doi: https://doi.org/10.1016/S0924-0136(03)00785-4 
  11. W. Han and F. Fang, Fundamental Aspects and Recent Developments in Electropolishing, International Journal of Machine Tools and Manufacture, 139, 1 (2019). Doi: https://doi.org/10.1016/j.ijmachtools.2019.01.001 
  12. H. S. Jun, M. S. Thesis, pp. 36-40, ChoSun University, Gwangju (2008). 
  13. C. L. Alexander, C. Liu, A. Alshanoon, R. M. Katona, R. G. Kelly, J. Carpenter, C. Bryan, and E. Schindelholz, Oxygen Reduction on Stainless Steel in Concentrated Chloride Media, Journal of The Electrochemical Society, 165, 869 (2018). Doi: https://doi.org/10.1149/2.0181813jes 
  14. W. Han and F. Fang, Two-step Electropolishing of 316L Stainless Steel in a Sulfuric Acid-free Electrolyte, Journal of Materials Processing Technology, 279, 116 (2020). Doi: https://doi.org/10.1016/j.jmatprotec.2019.116558 
  15. S. H. Kim, S. K. Lee, and E. S. Lee, Proc. Korean Society for Precision Engineering Conf., p. 139, Korean Society for Precision Engineering (2010). https://koreascience.kr/article/CFKO201030533376992.page 
  16. S. H. Kim, S. H. Lee, J. H. Cho, S. B. Kim, J. S. Choi, and C. H. Park, Electropolishing Characteristics of Stainless Steel for Industrial Application, Journal of Korean Institute Surface Engineering, 49, 363 (2016). Doi: http://dx.doi.org/10.5695/JKISE.2016.49.4.363 
  17. E. S. Lee, Machining Characteristics of the Electropolishing of Stainless Steel(STS316L), The International Journal of Advances Manufacturing Technology, 16, 591 (2000). Doi: https://doi.org/10.1007/s001700070049