Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the MSIT, Korea (No. 2019R1A2C1084020 and No. 2018R1A5A1025224).
References
- M. Kotobuki and M. Koishi, Preparation of Li7La3Zr2O12 solid electrolyte via a sol-gel method, Ceramics International, 40, 5043 (2014). Doi: https://doi.org/10.1016/j.ceramint.2013.09.009
- Y. Mizuno, H. Wagata, H. Onodera, K. Yubuta, T. Shishido, S. Oishi, and K. Teshima, Environmentally Friendly Flux Growth of High-Quality, Idiomorphic Li5-La3Nb2O12 Crystals, Crystal Growth & Design, 13, 479 (2013). Doi: https://doi.org/10.1021/cg3012348
- A. Ramzy and V. Thangadurai, Tailor-Made Development of Fast Li Ion Conducting Garnet-Like Solid Electrolytes, ACS Applied Materials & Interfaces, 2, 385 (2010). Doi: https://doi.org/10.1021/am900643t
- L. Dhivya and R. Murugan, Effect of Simultaneous Substitution of Y and Ta on the Stabilization of Cubic Phase, Microstructure, and Li+ Conductivity of Li7La3Zr2O12 Lithium Garnet, S Applied Materials & Interfaces, 6, 17606 (2014). Doi: https://doi.org/10.1021/am503731h
- W. G. Zeier, S. Zhou, B. Lopez-Bermudez, K. Page, and B. C. Melot, Dependence of the Li-Ion Conductivity and Activation Energies on the Crystal Structure and Ionic Radii in Li6MLa2Ta2O12, ACS Applied Materials & Interfaces, 6, 10900 (2014). Doi: https://doi.org/10.1021/am4060194
- H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L.M. Rodriguez-Martinez, M. Armand, and Z. Zhou, Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chemical Society Reviews, 46, 797 (2017). Doi: https://doi.org/10.1039/C6CS00491A
- C. K. Chan, T. Yang, and J. Mark Weller, Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries, Electrochimica Acta, 253, 268 (2017). Doi: https://doi.org/10.1016/j.electacta.2017.08.130
- J. H. Kim, Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries, Corrosion Science and Technology, 22, 287 (2023). Doi: https://doi.org/10.14773/CST.2023.22.4.287
- J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu, X. Guo, Z. Di, X. Wang, and H. Li, Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide, Nano Energy, 28, 447 (2016). Doi: https://doi.org/10.1016/j.nanoen.2016.09.002
- J. -F. Wu, W. K. Pang, V. K. Peterson, L. Wei, and X. Guo, Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries, ACS Applied Materials & Interfaces, 9, 12461 (2017). Doi: https://doi.org/10.1021/acsami.7b00614
- K. Aso, A. Sakuda, A. Hayashi, and M. Tatsumisago, All-Solid-State Lithium Secondary Batteries Using NiS-Carbon Fiber Composite Electrodes Coated with Li2S-P2S5 Solid Electrolytes by Pulsed Laser Deposition, ACS Applied Materials & Interfaces, 5, 686 (2013). Doi: https://doi.org/10.1021/am302164e
- Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nature Energy, 1, 16030 (2016). Doi: https://doi.org/10.1038/nenergy.2016.30
- Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy & Environmental Science, 7, 627 (2014). Doi: https://doi.org/10.1039/C3EE41655K
- L. J. Miara, N. Suzuki, W. D. Richards, Y. Wang, J. C. Kim, and G. Ceder, Li-ion conductivity in Li9S3N, Journal of Materials Chemistry A, 3, 20338 (2015). Doi: https://doi.org/10.1039/C5TA05432J
- K. Arbi, J.M. Rojo, and J. Sanz, Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy, Journal of the European Ceramic Society, 27, 4215 (2007). Doi: https://doi.org/10.1016/j.jeurceramsoc.2007.02.118
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, A lithium superionic conductor, Nature Materials, 10, 682 (2011). Doi: https://doi.org/10.1038/nmat3066
- R. Murugan, V. Thangadurai, and W. Weppner, Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12, Angewandte Chemie International Edition, 46, 7778 (2007). Doi: https://doi.org/10.1002/anie.200701144
- S. Xuefu, H. Nemori, S. Mitsuoka, P. Xu, M. Matsui, Y. Takeda, O. Yamamoto, and N. Imanishi, High Lithium-Ion-Conducting NASICON-Type Li1+xAlxGeyTi2-x-y(PO4)3 Solid Electrolyte, Frontiers in Energy Research, 4, 12 (2016). Doi: https://doi.org/10.3389/fenrg.2016.00012
- F. Han, T. Gao, Y. Zhu, K.J. Gaskell, and C. Wang, A Battery Made from a Single Material, Advanced Materials, 27, 3473 (2015). Doi: https://doi.org/10.1002/adma.201500180
- M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato, and T. Yoshida, Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode, Journal of The Electrochemical Society, 157, A1076 (2010). Doi: https://doi.org/10.1149/1.3474232
- K. Kajihara, N. Tezuka, M. Shoji, J. Wakasugi, H. Munakata, and K. Kanamura, Li4B4M3O12Cl (M = Al, Ga): An Electrochemically Stable, Lithium-Ion-Conducting Cubic Boracite with Substituted Boron Sites, Bulletin of the Chemical Society of Japan, 90, 1279 (2017). Doi: https://doi.org/10.1246/bcsj.20170242
- J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, Journal of Solid State Chemistry, 182, 2046 (2009). Doi: https://doi.org/10.1016/j.jssc.2009.05.020
- R. Wagner, G. J. Redhammer, D. Rettenwander, A. Senyshyn, W. Schmidt, M. Wilkening, and G. Amthauer, Crystal Structure of Garnet-Related Li-Ion Conductor Li7-3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification?, Chemistry of Materials, 28, 1861 (2016). Doi: https://doi.org/10.1021/acs.chemmater.6b00038
- C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor, Inorganic Chemistry, 50, 1089 (2011). Doi: https://doi.org/10.1021/ic101914e
- N. Bernstein, M. D. Johannes, and K. Hoang, Origin of the Structural Phase Transition in Li7La3Zr2O12, Physical Review Letters, 109, 205702 (2012). Doi: https://doi.org/10.1103/PhysRevLett.109.205702
- A. Duvel, A. Kuhn, L. Robben, M. Wilkening, and P. Heitjans, Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry, The Journal of Physical Chemistry C, 116, 15192 (2012). Doi: https://doi.org/10.1021/jp301193r
- S. Afyon, F. Krumeich, and J. L. M. Rupp, A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries, Journal of Materials Chemistry A, 3, 18636 (2015). Doi: https://doi.org/10.1039/C5TA03239C
- R. Jalem, M. J. D. Rushton, W. Manalastas, M. Nakayama, T. Kasuga, J. A. Kilner, and R. W. Grimes, Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes, Chemistry of Materials, 27, 2821 (2015). Doi: https://doi.org/10.1021/cm5045122
- F. Aguesse, W. Manalastas, L. Buannic, J.M. Lopez del Amo, G. Singh, A. Llordes, and J. Kilner, Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal, ACS Applied Materials & Interfaces, 9, 3808 (2017). Doi: https://doi.org/10.1021/acsami.6b13925
- D. Rettenwander, C. A. Geiger, M. Tribus, P. Tropper, and G. Amthauer, A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7-3xGaxLa3Zr2O12 with x = 0.08 to 0.84, Inorganic Chemistry, 53, 6264 (2014). Doi: https://doi.org/10.1021/ic500803h
- J. -F. Wu, E. -Y. Chen, Y. Yu, L. Liu, Y. Wu, W. K. Pang, V. K. Peterson, and X. Guo, Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity, ACS Applied Materials & Interfaces, 9, 1542 (2017). Doi: https://doi.org/10.1021/acsami.6b13902
- A. K. Baral, S. Narayanan, F. Ramezanipour, and V. Thangadurai, Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2-xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy, Physical Chemistry Chemical Physics, 16, 11356 (2014). Doi: https://doi.org/10.1039/C4CP00418C
- S. Ramakumar, L. Satyanarayana, S. V. Manorama, and R. Murugan, Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors, Physical Chemistry Chemical Physics, 15, 11327 (2013). Doi: https://doi.org/10.1039/C3CP50991E
- Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, and X. Guo, W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries, Electrochimica Acta, 180, 37 (2015). Doi: https://doi.org/10.1016/j.electacta.2015.08.046
- Y. Li, J.-T. Han, C.-A. Wang, H. Xie, and J.B. Goodenough, Optimizing Li+ conductivity in a garnet framework, Journal of Materials Chemistry, 22, 15357 (2012). Doi: https://doi.org/10.1039/C2JM31413D
- S. Ohta, T. Kobayashi, and T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7-XLa3(Zr2-X, NbX)O12 (X = 0-2), Journal of Power Sources, 196, 3342 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2010.11.089
- A. Dumon, M. Huang, Y. Shen, and C. W. Nan, High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet, Solid State Ionics, 243, 36 (2013). Doi: https://doi.org/10.1016/j.ssi.2013.04.016
- E. Rangasamy, J. Wolfenstine, J. Allen, and J. Sakamoto, The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte, Journal of Power Sources, 230, 261 (2013). Doi: https://doi.org/10.1016/j.jpowsour.2012.12.076
- Y. Kihira, S. Ohta, H. Imagawa, and T. Asaoka, Effect of Simultaneous Substitution of Alkali Earth Metals and Nb in Li7La3Zr2O12 on Lithium-Ion Conductivity, ECS Electrochemistry Letters, 2, A56 (2013). Doi: https://doi.org/10.1149/2.001307eel
- D. O. Shin, K. Oh, K. M. Kim, K. -Y. Park, B. Lee, Y. -G. Lee, and K. Kang, Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction, Scientific Reports, 5, 18053 (2015). Doi: https://doi.org/10.1038/srep18053
- T. Yang, Y. Li, W. Wu, Z. Cao, W. He, Y. Gao, J. Liu, and G. Li, The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic, Ceramics International, 44, 1538 (2018). Doi: https://doi.org/10.1016/j.ceramint.2017.10.072
- L. Buannic, B. Orayech, J.-M. Lopez Del Amo, J. Carrasco, N. A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, and A. Llordes, Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte, Chemistry of Materials, 29, 1769 (2017). Doi: https://doi.org/10.1021/acs.chemmater.6b05369
- C. Deviannapoorani, L. Dhivya, S. Ramakumar, and R. Murugan, Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets, Journal of Power Sources, 240, 18 (2013). Doi: https://doi.org/10.1016/j.jpowsour.2013.03.166
- K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, and L. Hu, Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances, 3, e1601659 (2017). Doi: https://doi.org/10.1126/sciadv.1601659
- S. Mukhopadhyay, T. Thompson, J. Sakamoto, A. Huq, J. Wolfenstine, J. L. Allen, N. Bernstein, D. A. Stewart, and M. D. Johannes, Structure and Stoichiometry in Supervalent Doped Li7La3Zr2O12, Chemistry of Materials, 27, 3658 (2015). Doi: https://doi.org/10.1021/acs.chemmater.5b00362