DOI QR코드

DOI QR Code

Effects of amprolium hydrochloride on expression of drug metabolizing enzyme genes in olive flounder Paralichthys olivaceus

Amprolium hydrochloride가 넙치 Paralichthys olivaceus의 약물대사 유전자 발현에 미치는 영향

  • Sang Hyup Park (Department of Aquatic Life Medicine, Gangneung-Wonju National University) ;
  • Chang Han Kim (Department of Aquatic Life Medicine, Gangneung-Wonju National University) ;
  • Jeong-wan Do (Pathology Division, National Institute of Fisheries Science) ;
  • Hye-Sung Choi (Pathology Division, National Institute of Fisheries Science) ;
  • Yi Kyung Kim (Department of Aquatic Life Medicine, Gangneung-Wonju National University)
  • 박상협 (강릉원주대학교 수산생명의학과) ;
  • 김창환 (강릉원주대학교 수산생명의학과) ;
  • 도정완 (국립수산과학원 병리연구과) ;
  • 최혜승 (국립수산과학원 병리연구과) ;
  • 김이경 (강릉원주대학교 수산생명의학과)
  • Received : 2023.08.30
  • Accepted : 2023.11.13
  • Published : 2023.12.31

Abstract

This study was undertaken to evaluate the effect of amprolium hydrochloride on detoxification process of olive flounder Paralichthys olivaceus. A series of two experiment was performed based on the LD50 value obtained for amprolium. First, thirty flounder (average weight 230.27 g; average length 27.99 cm) was randomly allocated into five groups. Treatment was carried out using intra-muscular injection of amprolium at the dose levels of 4, 8, 16, and 32 mg/kg body weight. At 8, 24 and 48 h post injection, liver and kidney were collected for expression assay of drug metabolizing enzymes and pro-inflammatory cytokine genes. We found that the interleukin-1β (IL-1β) mRNA level were induced at 32 mg/kg and CYP1A genes showed the opposite pattern, while UDP-glucuronosyl-transferase (UGT1A7) and GST were significantly reduced in the liver. Moreover, the suppression of drug metabolizing enzymes and cytokine gene in the kidney was observed after treatment. Another treatment was carried out using intramuscular injection with 4, 8, 16, and 32 mg/kg and 60, 80, 100, 120 mg/kg body weight. At 6 days post injection, liver was collected. The IL-1β expression was markedly induced in the experimental group treated with 4 mg/kg. In addition, glutathione S-transferase (GST) mRNA level was higher in the group with 4 mg/kg. In conclusion, our data suggests that amprolium seem to cause direct or indirect physical, or biological toxicity of flounders, although this drug is considered one of the safest synthetic anticoccidial drugs of the livestock industry.

본 연구에서는 넙치의 해독 과정에서 amprolium hydrochloride의 영향을 평가하기 위해 수행되었다. 이전 연구에서 보고된 amprolium의 LD50 값을 이용하여 두 가지 실험을 진행하였다. 첫 번째는 30마리의 넙치를 5개의 대조군 및 실험군으로 나누었고 4, 8, 16, 32 mg/kg 용량의 amprolium을 근육 내 주사 투여하였다. 주사 후 8, 24, 48 시간에 간과 신장을 적출하여 약물 대사 효소와 전염증성 사이토카인 유전자의 발현을 분석하였다. 32 mg/kg 용량의 실험군에서 IL-1β mRNA의 높은 발현을 확인하였고, CYP1A는 이와 반대의 결과를 보였으며, 간에서 UGT와 GST mRNA의 발현은 유의하게 감소하는 것을 확인하였다. 또한 신장에서 amprolium 주사 투여 후 약물 대사 효소와 사이토카인 유전자의 억제가 관찰되었다. 또 다른 실험에서는 4, 8, 16, 32 mg/kg과 60, 80, 100, 120 mg/kg의 용량을 설정하여 근육 내 주사 투여하였다. 주사를 완료하고 6일 후 간을 적출하여 유전자의 발현을 확인하였다. IL-1β의 발현은 4 mg/kg 용량 실험군에서 유의적으로 매우 높은 발현을 보였다. GST의 mRNA 발현 또한 4 mg/kg 용량 실험군에서 높은 발현을 보였다. 결론적으로 우리의 결과는 amprolium이 가축 산업의 가장 안전한 합성 항콕시듐 약물 중 하나로 간주되지만 넙치의 간접 또는 직접적인 물리적 또는 생물학적 독성을 유발하는 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 국립수산과학원(P2023202, 넙치쿠도아충 저감화 연구)의 지원에 의해 진행되었음.

References

  1. Ahn, M., Won, S., Kang, B., Gong, P., Yoo, E., Dharaneedharan, S. and Jang, Y.: In vitro effect of two commercial anti-coccidial drugs against myxospores of Kudoa septempunctata genotype ST3 (Myxozoa, Multivalvulida). Parasite., 24, 2017. 10.1051/parasite/2017012 
  2. Allocati, N., Masulli, M., DiIlio, C. and Federici, L.: Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis., 7(1):8, 2018. https://doi.org/10.1038/s41389-017-0025-3 
  3. Ballak, D.B., Stienstra, R., Tack, C.J., Dinarello, C.A. and Diepen, J.A.: IL-1 family members in the pathogenesis and treatment of metabolic disease: focus on adipose tissue inflammation and insulin resistance. Cytokine., 75:280-90, 2015. https://doi.org/10.1016/j.cyto.2015.05.005 
  4. Beckett, G.J. and Hayes, J.D.: Glutathione S-transferases: biomedical applications. Adv. Clin. Chem., 30:281-380. 1993. https://doi.org/10.1016/S0065-2423(08)60198-5 
  5. Bouraoui, Z., Banni, M., Ghedira, J., Clerandeau, C., Guerbej, H., Narbonne, J.F. and Boussetta, H.: Acute effects of cadmium on liver phase I and phase II enzymes and metallothionein accumulation on sea bream Sparus aurata. Fish Physiol. Biochem., 34:201-207, 2008. https://doi.org/10.1007/s10695-007-9177-y 
  6. Christen, V. and Fent, K.: Tissue-, sex-and development-specific transcription profiles of eight UDP-glucuronosyltransferase genes in zebrafish (Danio rerio) and their regulation by activator of aryl hydrocarbon receptor. Aquat. Toxicol., 150:93-102. 2014. https://doi.org/10.1016/j.aquatox.2014.02.019 
  7. Cook, N., Hansen, A.R., Siu, L.L. and Razak, A.R.A.: Early phase clinical trials to identify optimal dosing and safety. Mol. Oncol., 9:997-1007, 2015. https://doi.org/10.1016/j.molonc.2014.07.025 
  8. David, R.M., Jones, H.S., Panter, G.H., Winter, M.J., Hutchinson, T.H. and Chipman, J.K.: Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (Danio rerio) larvae but not Daphnia magna. Chemosphere., 88(8):912-917, 2012. https://doi.org/10.1016/j.chemosphere.2012.03.018 
  9. Durou, C., Poirier, L., Amiard, J.C., Budzinski, H., Gnassia-Barelli, M., Lemenach, K., Peluhet, L., Mouneyrac, C., Romeo, M. and Amiard-Triquet, C.: Biomonitoring in a clean and a multi-contaminated estuary based on biomarkers and chemical analyses in the endobenthic worm Nereis diversicolor. Environ. Pollut., 148:445-458, 2007. https://doi.org/10.1016/j.envpol.2006.12.022 
  10. Duszynski, D.W., Kvicerova, J. and Seville, R.S.: The biology and identification of the Coccidia (Apicomplexa) of carnivores of the world. AP., 2018.
  11. EMA.: Committee for veterinary medicinal products (CVMP) - Amprolium summary report (1), EMEA/MRL/721/99/.London, 1999. 
  12. George, S., Wright, J., Martinez-Lara, E., Carpene, E. and Kindt, M.: Levels of cellular glutathione and metallothionein affect the toxicity of oxidative stressors in an established carp cell line. Mar. Environ. Res., 50(1-5):503-508, 2000. https://doi.org/10.1016/S0141-1136(00)00125-2 
  13. Ghezzi, P.B.P.V.M.C., Saccardo, B., Villa, P., Rossi, V., Bianchi, M. and Dinarello, C.A.: Role of interleukin-1 in the depression of liver drug metabolism by endotoxin. Infection and immunity, 54(3), 837-840, 1986, https://doi.org/10.1128/iai.54.3.837-840.1986 
  14. Gibson, T.P.: Renal disease and drug metabolism: an overview. American Journal of Kidney Diseases, 8(1), 7-17, 1986. https://doi.org/10.1016/S0272-6386(86)80148-2 
  15. Ghosh, M.C., Ghosh, R. and Ray, A.K.: Impact of copper on biomonitoring enzyme ethoxyresorufin-o-deethylase in cultured catfish hepatocytes. Environ. Res., 86(2):167-173, 2001. https://doi.org/10.1006/enrs.2001.4249 
  16. Grabner, D., Yokoyama, H., Shirakashi, S. and Kinami, R.: Diagnostic PCR assays to detect and differentiate Kudoa septempunctata, K. thyrsites and K. lateolabracis (Myxozoa, Multivalvulida) in muscle tissue of olive flounder (Paralichthys olivaceus). Aquaculture., 338:36-40, 2012. https://doi.org/10.1016/j.aquaculture.2012.01.022 
  17. Gudin, J. and Fudin, J.: Peripheral Opioid Receptor Antagonists for Opioid-Induced Constipation: A Primer on Pharmacokinetic Variabilities with a Focus on Drug Interactions. J Pain Res., 13:447-456, 2020. https://doi.org/10.2147/JPR.S220859 
  18. Gunaratna, C.: Drug metabolism & pharmacokinetics in drug discovery: a primer for bioanalytical chemists, part I. Curr Sep., 19(1):17-23, 2000. 
  19. Higgins, L.G. and Hayes, J.D.: The cap'n'collar transcription factor Nrf2 mediates both intrinsic resistance to environmental stressors and an adaptive response elicited by chemopreventive agents that determines susceptibility to electrophilic xenobiotics. Chem. Biol. Interact., 192(1-2):37-45, 2011. https://doi.org/10.1016/j.cbi.2010.09.025 
  20. Hodgson, E. and Levi, P.E.: Introduction to Biochemical Toxicology. 2nd. Norwalk, Conn, USA: Appleton & Lange., 1994. 
  21. Jancova, P., Anzenbacher, P. and Anzenbacherova, E.: Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub., 154(2):103-116, 
  22. Jancova, P. and Siller, M.: Phase II drug metabolism. Topics on drug metabolism., 35-60, 2012. 
  23. Jones, H.: Xenobiotic metabolism and zebrafish (danio rerio) larvae (Doctoral dissertation, University of Birmingham). UOB., 
  24. Kiang, T.K., Ensom, M.H. and Chang, T.K.: UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol. Ther., 106, 97-132. 2005. https://doi.org/10.1016/j.pharmthera.2004.10.013 
  25. Kim, H.N., Park, C.I., Chae, Y.S., Shim, W.J., Kim, M., Addison, R.F. and Jung, J.H.: Acute toxic responses of the rockfish (Sebastes schlegeli) to Iranian heavy crude oil: Feeding disrupts the biotransformation and innate immune systems. Fish Shellfish Immunol., 35(2):357-365, 2013. https://doi.org/10.1016/j.fsi.2013.04.041 
  26. Knaapen, A.M., Shi, T., Borm, P.J. and Schins, R.P.: Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol. Cell. Biochem., 234: 317-326. 2002. https://doi.org/10.1007/97 
  27. Laforge, M., Elbim, C., Frere, C., Hemadi, M., Massaad, C., Nuss, P., Benoliel, J.J. and Becker, C.: Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol., 20(9):515-516, 2020. https://doi.org/10.1038/s41577-020-0407-1 
  28. Leaver, M.J., Wright, J., Hodgson, P., Boukouvala, E. and George, S.G.: Piscine UDP-glucuronosyltransferase 1B. Aquat. Toxicol., 84(3):356-365, 2007. https://doi.org/10.1016/j.aquatox.2007.06.015 
  29. Livak, K.J. and Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. methods., 25(4):402-408, 2001. https://doi.org/10.1006/meth.2001.1262 
  30. Matsukane, Y., Sato, H., Tanaka, S., Kamata, Y. and Sugita-Konishi, Y.: Kudoa septempunctata n. sp. (Myxosporea: Multivalvulida) from an aquacultured olive flounder (Paralichthys olivaceus) imported from Korea. J. Parasitol. Res., 107:865-872, 2010. https://doi.org/10.1007/s00436-010-1941-8 
  31. Meech, R., Hu, D.G., McKinnon, R.A., Mubarokah, S. N., Haines, A.Z., Nair, P.C., Rowland, A. and Mackenzie, P.I.: The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms. Physiol Rev., 99:1153-1222, 2019. https://doi.org/10.1152/physrev.00058.2017 
  32. Mohana, K. and Achary, A.: Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance. Drug Metab. Rev., 49(3):318-337, 2017. https://doi.org/10.1080/03602532.2017.1343343 
  33. Monshouwer M., Witkamp R.F., Nijmeijer S.M., Van Amsterdam J.G. and Van Miert A.: Suppression of cytochrome P450- and UDP glucuronosyl transferase-dependent enzyme activities by proinflammatory cytokines and possible role of nitric oxide in primary cultures of pig hepatocytes. Toxicol. Appl. Pharmacol., 137:237-244, 1996. https://doi.org/10.1006/taap.1996.0077 
  34. Moreira, S.M. and Guilhermino, L.: The use of Mytilus galloprovincialis acetylcholinesterase and glutathione S-transferases activities as biomarkers of environmental contamination along the northwest Portuguese coast. Environ. Monit. Assess., 105:309-325, 2005. https://doi.org/10.1007/s10661-005-3854-z 
  35. Oda, S., Fukami, T., Yokoi, T. and Nakajima, M.: A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab. Pharmacokinet., 30:30-51. 2015. https://doi.org/10.1016/j.dmpk.2014.12.001 
  36. Park, S.H., Choi, Y.K., Do, J.W., Choi, H.S. and Kim, Y.K.: Acute toxicity of amprolium hydrochloride in Paralichthys olivaceus. Fish Pathol., 36(1):141-150. 2023. 
  37. Pandey, D.G.: Treatment for certain parasitic diseases of fishes. Universal Journal of Pharmacy, 2(02), 1-3, 2013. 
  38. Rehberger, K., Bailey, C., Von Siebenthal, E.W. and Segner, H.: Transcriptomic analysis of the impacts of ethinylestradiol (EE2) and its consequences for proliferative kidney disease outcome in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol., 222:31-48, 2019. https://doi.org/10.1016/j.cbpc.2019.04.009 
  39. Rowland, A., Miners, J.O. and Mackenzie, P.I.: The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol., 45(6):121-1132. 2013. https://doi.org/10.1016/j.biocel.2013.02.019 
  40. Seppola, M., Larsen, A.N., Steiro, K., Robertsen, B. and Jensen, I.: Characterisation and expression analysis of the interleukin genes, IL-1β, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.). Mol. Immunol., 45(4):887-897, 2008. https://doi.org/10.1016/j.molimm.2007.08.003 
  41. Shin, H.C.: 화학물질의 독성시험. Korean J. Vet. Res., 33(5):292-297, 1997. 
  42. Shin, S.P., Hong, H.K., Jin, C.N., Sohn, H., Choi, K.S. and Lee, J.: Effect of Epigallocatechin Gallate on Viability of Kudoa septempunctata. Korean J. Parasitol., 58(5):593, 2020. 10.3347/kjp.2020.58.5.593 
  43. Sitja-Bobadilla, A.: Can Myxosporean parasites compromise fish and amphibian reproduction. Proc. R. Soc. B: Biol. Sci., 276:2861-2870, 2009. https://doi.org/10.1098/rspb.2009.0368 
  44. Taxak, N. and Bharatam, P.V.: Drug metabolism: A fascinating link between chemistry and biology. Resonance., 19:259-282, 2014. https://doi.org/10.1007/s12045-014-0031-0 
  45. Xu, X., Cui, Z., Wang, X., Wang, X. and Zhang, S.: Toxicological responses on cytochrome P450 and metabolic transferases in liver of goldfish (Carassius auratus) exposed to lead and paraquat. Ecotoxicol. Environ. Saf., 151, 161-169, 2018. https://doi.org/10.1016/j.ecoenv.2017.12.062 
  46. Yokoyama, H., Whipps, C.M., Kent, M.L., Mizuno, K. and Kawakami, H.: Kudoa thyrsites from Japanese flounder and Kudoa lateolabracis n. sp. from Chinese sea bass: causative myxozoans of post-mortem myoliquefaction. Fish Pathol., 39:79-86, 2004. https://doi.org/10.3147/jsfp.39.79 
  47. Yokoyama, H., Yanagida, T. and Shirakashi, S.: Kudoa ogawain. sp.(Myxozoa: Multivalvulida) from the trunk muscle of Pacific barrelfish Hyperoglyphe japonica (Teleostei: Centrolophidae) in Japan. Parasitol. Res., 110:2247-2254, 2012. https://doi.org/10. 1007/s00436-011-2756-y  https://doi.org/10.1007/s00436-011-2756-y
  48. Yokoyama, H.: Kudoosis of marine fish in Japan. Fish Pathol., 51:163-168. 2016.  https://doi.org/10.3147/jsfp.51.163
  49. Zelikoff, J.T.: Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals?. Toxicology., 129(1):63-71. 1998. https://doi.org/10.1016/S0300-483X(98)00064-X