DOI QR코드

DOI QR Code

다중 스케일 지리가중회귀 모형과 KT 측정기 자료를 활용한 대구시 미세먼지에 대한 환경적 형평성 분석

Environmental Equity Analysis of Fine Dust in Daegu Using MGWR and KT Sensor Data

  • 조은아 (경북대학교 대학원 지리학과) ;
  • 전병운 (경북대학교 지리학과)
  • Euna CHO (Department of Geography, Kyungpook National University) ;
  • Byong-Woon JUN (Department of Geography, Kyungpook National University)
  • 투고 : 2023.12.08
  • 심사 : 2023.12.22
  • 발행 : 2023.12.31

초록

본 연구는 다중 스케일 지리가중회귀(MGWR: Multi-scale Geographically Weighted Regression) 모형과 KT(Korea Telecom Corporation) 측정기 자료를 활용하여 대구시를 사례로 미세먼지(PM10)에 대한 환경적 형평성을 분석하였다. 미세먼지를 측정하기 위한 기존의 국가 측정망 자료는 넓은 지역에서 드물게 분포하는 적은 수의 관측지점에서 수집된다. 이러한 단점을 보완하기 위하여 많은 수의 관측지점이 조밀하게 분포하는 KT 측정기 자료를 본 연구에서 사용하였다. MGWR 모형은 미세먼지의 농도와 사회경제적 변수 간의 공간적 관계에 있어서 공간적 이질성과 다중 스케일 맥락 효과를 다루기 위하여 사용되었다. 분석 결과에 의하면, 대구시에서 지가 및 외국인 비율과 관련하여 미세먼지의 분포에 따른 환경적 불형평성이 나타났다. 또한, MGWR 모형이 미세먼지의 농도와 사회경제적 변수 간의 공간적 관계를 설명하는데 있어서 OLS(Ordinary Least Square: 최소자승법)와 GWR(Geographically Weighted Regression: 지리가중회귀) 모형 보다 나은 설명력을 보였다. 본 연구는 미세먼지를 측정하기 위한 기존의 국가 측정망 자료의 보완자료로서 KT 측정기 자료의 가능성을 논증하였다.

This study attempted to analyze the environmental equity of fine dust(PM10) in Daegu using MGWR(Multi-scale Geographically Weighted Regression) and KT(Korea Telecom Corporation) sensor data. Existing national monitoring network data for measuring fine dust are collected at a small number of ground-based stations that are sparsely distributed in a large area. To complement these drawbacks, KT sensor data with a large number of IoT(Internet of Things) stations densely distributed were used in this study. The MGWR model was used to deal with spatial heterogeneity and multi-scale contextual effects in the spatial relationships between fine dust concentration and socioeconomic variables. Results indicate that there existed an environmental inequity by land value and foreigner ratio in the spatial distribution of fine dust in Daegu metropolitan city. Also, the MGWR model showed better the explanatory power than Ordinary Least Square(OLS) and Geographically Weighted Regression(GWR) models in explaining the spatial relationships between the concentration of fine dust and socioeconomic variables. This study demonstrated the potential of KT sensor data as a supplement to the existing national monitoring network data for measuring fine dust.

키워드

참고문헌

  1. Buzzelli, M., M. Jerrett, R. Burnett and N. Finklestein. 2003. Spatiotemporal perspectives on air pollution and environmental justice in Hamilton, Canada, 1985-1996. Annals of the Association of American Geographers 93(3):557-573. https://doi.org/10.1111/1467-8306.9303003
  2. Cho, E.A. and B.W. Jun. 2019. Visual and statistical comparison of fine dust data collected by KT and Airkorea. Proceedings of Annual Conference of the Korean Geographical Society. 72pp.
  3. Cho, H.L. and J.C. Jeong. 2009. The distribution analysis of PM10 in Seoul using spatial interpolation methods. Journal of Environmental Impact Assessment 18(1):31-39.
  4. Choi, B.G. and K.B. Kim. 2004. Correlation analysis of land used pattern and air pollution using GIS. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 22(3):293-301.
  5. Fotheringham, A.S., C. Brunsdon and M. Charlton. 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley & Sons Inc.: Hoboken, NJ, USA. p.282.
  6. Fotheringham, A.S. and T.M. Ohsan. 2016. Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems 18:303-329. https://doi.org/10.1007/s10109-016-0239-5
  7. Fotheringham, A.S., W. Yang and W. Kang. 2017. Multiscale geographically weighted regression(MGWR). Annals of the Association of American Geograpers 107(6):1247-1265. https://doi.org/10.1080/24694452.2017.1352480
  8. Han, S.W. 2014. Analysis of the properties of particle matter in Busan and Daegu. M.A. Thesis, Graduate School of Environmental Studies, Pusan National University. Pusan, Korea. 54pp.
  9. Hong, S.C. and B.Y. Yang. 2021. A comparative analysis of GWR and MGWR on the COVID-19 diffusion in Seoul, South Korea. Journal of the Korean Cartographic Association 21(3):77-91.
  10. Jang, J.H., H.W. Lee and S.H. Lee. 2012. Spatial and temporal features of PM10 evolution cycle in the Korean peninsula. Journal of the Environmental Sciences 21(2):189-202. https://doi.org/10.5322/JES.2012.21.2.189
  11. Jeong, D.J. 2012. A study on the distribution characteristics of air pollutants and their impacts on the operation of a coal-fired power plant. M.A. Thesis, Keymyung University, Daegu, Korea. 78pp.
  12. Jerrett, M., R.T. Burnett, P. Kanaroglou, J. Eyles, N. Finkelstein, C. Giovis and J.R. Brook. 2001. A GIS-environmental justice analysis of particulate air pollution in Hamilton, Canada. Environment and Planning A 33:955-973. https://doi.org/10.1068/a33137
  13. Jun, B.W. 2006. GIS-based environmental equity assessment in the Atlanta Metropolitan Area, 1990. Journal of the Korean Urban Geographical Society 9(2):139-152.
  14. Jun, B.W. 2011. Exploring the spatial relationships between environmental equity and urban quality of life. Journal of the Korean Association of Geographic Information Studies 14(3):223-2351. https://doi.org/10.11108/kagis.2011.14.3.223
  15. Kim, A.Y. and B.W. Jun. 2012. Environmental equity analysis of the accessibility to public transportation services in Daegu city. Journal of the Korean Association of Geographic Information Studies 15(1):76-86. https://doi.org/10.11108/kagis.2012.15.1.076
  16. Kim, A.Y. and C.H. Kwon. 2016. A study on optimal location of air pollution monitoring networks in urban area using GIS : focused on the case of Seoul city. Journal of The Korean Society of Disaster Information 12(4):358-365. https://doi.org/10.15683/kosdi.2016.12.31.358
  17. Kim, D.Y. 2013. Fine dust to threaten our health: cause and policy measure. Issue &Diagnosis 121:25. 21pp.
  18. Kim, M.Y., Y.B. Song and E.J. Kim. 2016. A study on the distribution and change of PM10 for urban livability: focused on Daegu metropolitan city. Proceedings of Fall Conference of the Korean Housing Association 2. 173-178pp.
  19. Kim, Y.J. and W.K. Jo. 2012. Assessment of PM-10 monitoring stations in Daegu using GIS interpolation. Journal of Korean Society for Geospatial Information Science 20(20):3-13. https://doi.org/10.7319/kogsis.2012.20.2.003
  20. Kwon, Y.S. and J.Y. Hyun. 2017. Policy measure for fine dust: scientific monitoring is the starting point. Daekyung CEO Briefing 519. 8pp.
  21. Kwon, Y.S. and K.H. Nam. 2014. Let's protect citizen's health from find dust. Daekyung CEO Briefing 384. 10pp.
  22. Lee, I.H. 2008. An analytical review of environment justice research. Space and Environment 29:32-67.
  23. Lee, W.D., J.S. Won and C.H. Joh. 2011. A study on the air pollution index and the characteristics of urban space structure in Seoul. Proceedings of Annual Conference of the Korean Geographical Society. 267-272pp.
  24. Leung, Y., Y. Zhou, K. Lam, T. Fung, K. Cheung, T. Kim and H. Jung. 2019. Integration of air pollution data collected by mobile sensors and ground-based stations to derive a spatiotemporal air pollution profile of a city. International Journal of Geographical Information Science 33(11):2218-2240. https://doi.org/10.1080/13658816.2019.1633468
  25. Maantay, J. 2007. Asthma and air pollution in the Bronx: Methodological and data considerations in using GIS for environmental justice and health research. Health & Place 13:32-56. https://doi.org/10.1016/j.healthplace.2005.09.009
  26. Oshan, T.M., Z. Li, W. Kang, L. Wolf and A.S. Fotheringham. 2019. mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information 8(6), 269; https://doi.org/10.3390/ijgi8060269.
  27. Park, S.Y. 2017. Distributional characteristics of PM10 concentration in Pusan and local temperature variation. Proceedings of Winter Conference of the Korean Association of Regional Geographers. pp.25.
  28. Pearce, J. and S. Kingham. 2008. Environmental inequalities in New Zealand: A national study of air pollution and environmental justice. Geoforum 39:980-993. https://doi.org/10.1016/j.geoforum.2007.10.007
  29. Rodriguez, S., X. Querol, A. Alastuey, M. Viana, M. Alarcon, E. Mantilla and C.R. Ruiz. 2004. Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Science of The Total Environment 328(1-3):95-113.
  30. Ryu, H.W. and D.H. Jang. 2019. A study on the conformity assessment of GWR model through analyzing the correlation between fine particles(PM10) concentration and land-cover. Journal of the Association of Korean Photo-Geographers 29(1):73-84. https://doi.org/10.35149/jakpg.2019.29.1.006
  31. Seo, H.D., A.Y. Lim, J.Y. Park and S.L. Jo. 2018. GIS analysis of residential location of the elderly and the ill: focused on air pollution. Proceedings of Annual Conference of the Korean Geographical Society. 149-151pp.
  32. Seo, H.J. and B.W. Jun. 2011. Environmental equity analysis of the accessibility of urban neighborhood parks in Daegu city. Journal of the Korean Association of Geographic Information Studies 14(4):221-237. https://doi.org/10.11108/kagis.2011.14.4.221
  33. Wheeler, B.M. and Y. Ben-Shlomo. 2005. Environmental equity, air quality, socioeconomic status, and respiratory health: a linkage analysis of routine data from the Health Survey for England. Journal of Epidemiol Community Health 59:948-954. https://doi.org/10.1136/jech.2005.036418
  34. Wong, D.W., Yuan, L. and S.A. Perlin. 2004. Comparison of spatial interpolation methods for the estimation of air quality data. Journal of Exposure Analysis and Environmental Epidemiology 14:404-415. https://doi.org/10.1038/sj.jea.7500338
  35. Zoest, V., F.B. Osei, G. Hoek and A. Stein. 2020. Spatio-temporal regression kriging for modeling urban NO2 concentrations. International Journal of Geographical Information Science. International Journal of Geographical Information Science 34(5):851-865. https://doi.org/10.1080/13658816.2019.1667501