DOI QR코드

DOI QR Code

UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met

  • 김성현 (창원대학교 스마트환경에너지공학과정) ;
  • 박경훈 (창원대학교 스마트그린공학부) ;
  • 송봉근 (창원대학교 산업기술연구원)
  • Seounghyeon KIM (Dept. of Smart Ocean Environmental Energy, Changwon National University) ;
  • Kyunghun PARK (School of Smart Green Engineering, Changwon National University) ;
  • Bonggeun SONG (Institute of Industrial Technology, Changwon National University)
  • 투고 : 2023.11.02
  • 심사 : 2023.11.29
  • 발행 : 2023.12.31

초록

본 연구는 무인항공기(Unmanned Aerial Vehicles, UAV) 기반 물리적 환경인 Normalized Difference Vegetation Index(NDVI), Sky View Factor(SVF)와 ENVI-met 모델링을 활용하여 시간대별 열적 환경을 비교 분석하는 것을 목적으로 수행하였다. 연구 결과 NDVI, SVF는 열적 환경 요소인 Upward short-wavelength(S↑), Downward short-wavelength(S↓), Upward long-wavelength(L↑), Downward long-wavelength(L↓), Land Surface Temperature (LST), Mean Radiant Temperature(Tmrt)와 유의수준 1% 이내에서 모두 상관관계를 보이는 것으로 도출되었다. 특히, NDVI는 S↑와 12시에 최대 -0.52**의 상관관계를 가지는 것으로 분석되었고, L↓와 모든 시간대에서 0.53** 이상의 상관성을 보였다. LST와는 -0.61**(13시)의 상관성을 보여 NDVI는 장파 복사에너지의 관련성이 높은 것으로 판단된다. SVF의 경우 SVF 범위에 따라 장파 복사에너지와의 관련성이 높은 것으로 도출되었다. 본 연구결과는 공간의 열적 쾌적성과 미기후를 평가하기 위한 통합 접근 방식을 제공할 수 있으며, 도시 디자인 및 경관 특성이 보행자의 열 쾌적성 미치는 영향 관계 규명 등에 활용될 수 있을 것으로 판단된다.

The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. NRF-2022R1C1C2009639, 2022R1F1A1074483)

참고문헌

  1. Emilsson, T. 2021. Chapter 18 - Urban life and climate change. The Impacts of Climate Change. 453-462.
  2. Eum, J.H., Min, J.K., Park, J.H., Son, J.M., Sou, H.D., Oh, J.H. 2023. An Analysis of the Effect of Reducing Temperature and Fine Dust in the Roadside Tree Planting Scenario. Journal of the Korean Association of Geographic Information Studies 26(2):68-81.
  3. Firozjaei, M.K., Kiavarz, M., Alavipanah, S.K. 2022. Quantification of landscape metrics effects on downscaled urban land surface temperature accuracy of satellite imagery. Advances in Space Research, 70(1):35-47. https://doi.org/10.1016/j.asr.2022.04.021
  4. Guha, S. and Govil, H. 2021. A long-term monthly analytical study on the relationship of LST with normalized difference spectral indices. European Journal of Remote Sensing, 54(487-512). https://doi.org/10.1080/22797254.2021.1965496
  5. Gyeongnam Air Quality Information. 2022. Air Quality Status by Measurement Factors. https://air.gyeongnam.go.kr/main.do (Accessed June 10, 2022).
  6. He, B.J., D. Zhao, X. Dong, Z. Zhao, L. Li, L. Duo, J. Li. 2022. Will individuals visit hospitals when suffering heat-related illnesses? Yes, but.... Build. Environ. 208 (108587). https://doi.org/10.1016/j.buildenv.2021.108587.
  7. Kang, D.I., Moon, H.G., Sung, S.Y., Cha, J.G. 2018. Applicability of UAV in Urban Thermal Environment Analysis. Journal of KILA 46(2):52-61.
  8. Kim, J.S., Lee, D.K., Brown, R.D., Kim, S.H., Kim, J.H., Sung, S.Y. 2022. The effect of extremely low sky view factor on land surface temperatures in urban residential areas. Sustainable Cities and Society 80(103799) https://doi.org/10.1016/j.scs.2022.103799.
  9. Kim S.H., Park, K.H., Lee, S.A., Song, B.G. 2022. Analysis of Thermal Environment Characteristics by Spatial Type using UAV and ENVI-met. Journal of the Korean Association of Geographic Information Studies 25(1):28-43.
  10. Korea Forest Service. 2020. Street Tree Establishment and Management Manual. Pages 38-39.
  11. Liu, Z., Cheng, W., Jim, C.Y., Marakinyo, T.E., Shi, Y., Ng, E. 2021. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Building and environment. 200(107939).
  12. Lyu, R., Pang, J., Tian, X., Zhao, W., Zhang, J. 2023. How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data. Sustainable Cities and Society. 88(104287).
  13. McDonald, R.I., Mansur, A.V., Ascensao, F., Colbert, M., Crossman, K., Elmqvist, T., Gonzalez, A., Guneralp, B., Haase, D., Hamann, M., Hillel, O., Huang, K., Kahnt, B., Maddox, D., Pacheco, A., Pereira, H.M., Seto, K.C., Simkin, R., Walsh, B., Alexandra S., Ziter, W.C. 2020. Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability 3:16-24.
  14. Meng, C., Huang, C., Dou, J., Li, H., Cheng, C. 2021. Key parameters in urban surface radiation budget and energy balance modeling, Urban Climate, 39(100940) https://doi.org/10.1016/j.uclim.2021.100940.
  15. Mirzaei, P.A., and Haghighat, F. 2010. Approaches to study Urban Heat Island - Abilities and limitations, Building and Environment, 45(10):2192-2201. https://doi.org/10.1016/j.buildenv.2010.04.001
  16. Oke, T.R. 1973. City size and the urban heat island. Atmospheric Environment(1967)7(8):769-779. https://doi.org/10.1016/0004-6981(73)90140-6
  17. Rouse, J.W., R.H. Haas, J.A. Schell and G.W. Deering. 1973. Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium 1:309-317.
  18. Smith, P., Sarricolea, P., Peralta, O., Aguila, J.P., Thomas, F. 2021. Study of the urban microclimate using thermal UAV. The case of the mid-sized cities of Arica(arid) and Curico(Mediterranean), Chile, Building and Environment 206(108372) https://doi.org/10.1016/j.buildenv.2021.108372.
  19. Song, B.G. and Park, K.H. 2020. Verification of accuracy of unmanned aerial vehicle (UAV) land surface temperature images using in-situ data. Remote Sensing 12(2):288.
  20. Tsoka S., Tsikaloudaki, A. and Theodosiou, T. 2018. Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications-a review. Sustainable Cities and Society, DOI:10.1016/J.SCS.2018.08.009.
  21. Ullah, W., Ahmad, K., Ullah, S., Tahir, A.A., Javed, M.F., Nazir, A., Abbasi, A.M., Aziz, M., and Mohamed, A. 2023. Analysis of the relationship among land surface temperature(LST), land use land cover (LULC), and normalized difference vegetation index(NDVI) with topographic elements in the lower Himalayan region. Heliyon 9(2). https://doi.org/10.1016/j.heliyon.2023.e13322.
  22. Yuan, F and Bauer, M.E. 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3):375-386. https://doi.org/10.1016/j.rse.2006.09.003