DOI QR코드

DOI QR Code

Suitability Assessment of Arbor Day Using Satellite-Based Soil-Thaw Detection and Analyses

위성 기반의 토양 융해 탐지 자료를 이용한 식목일의 적합성 검토

  • Received : 2023.08.13
  • Accepted : 2023.10.13
  • Published : 2023.12.31

Abstract

Arbor Day is a day that encourages people to plant trees and symbolizes the timing of planting. Arbor Day has been honored on April 5th in Korea, but it often does not agree to actual planting time due to global warming. This study confirmed the discrepancy between Arbor Day and regional soil-thawing times and reviewed alternative dates for tree planting using satellite-based soil-thaw data (FT-ESDR) from 1991 to 2020. Study results showed that the start time of planting on the Korean Peninsula, which was indicated by soil-thaw dates, was March 24 during 1991-2000, and it progressively changed to March 17 during 2011-2020. Should Arbor Day be changed based on soil-thaw periods, mid-March would be the most comprehensive, suitable alternative period considering the number of governmental administration units (cities and counties) and the land area of soil-thaw. Tree-Planting Day (March 14) and International Day of Forests (March 21) were found suitable for alternative dates to Arbor Day because they were close to the average soil-thaw time of Korean Peninsula (March 19) and land area whose soil-thaw time was within 10 days from those two dates ranged from 52.5% to 58.8% centered geographically on the mid-section of the peninsula. Since the periods of soil-thaw will continue to change due to climate change, it is necessary to reflect the trend of advancing planting periods in the future if Arbor Day is changed to an earlier date.

식목일은 식재를 권장하고 식재 시기가 도래했음을 상징하는 날로서 우리나라의 경우 4월 5일로 정해져 있지만, 지구온난화로 인해 식목일이 실제 식재 시기와 큰 차이를 보이고 있다. 본 연구에서는 1991~2020년 기간을 대상으로 인공위성 기반의 토양 융해 관측 자료(FT-ESDR)를 이용하여 식재 가능 시기의 시작과 현행 식목일 간의 불일치 현상을 확인하고 식재를 위한 대안 시기를 검토하였다. 연구 결과, 한반도의 토양 융해일은 평균적으로 1991~2000년 기간 중 3월 24일이었던 것이 2011~2020년 기간에는 3월 17일로 변화하였다. 토양 융해일을 고려하여 식목일을 변경할 경우, 시·군 수와 면적을 모두 고려할 때 3월 중순을 채택하는 것이 식재 시기의 적합성 측면에서 가장 포괄성이 큰 것으로 분석되었다. 따라서 현행 식목일의 대안으로 적합도가 높은 날은 식수절(3월 14일)과 세계 산림의 날(3월 21일)인데, 이는 시기적으로 한반도 평균 토양 융해일인 3월 19일에 가깝고, 토양 융해일과의 편차가 10일 이내 범위에 놓이는 면적이 한반도 중부를 중심으로 전체의 52.5~58.8%에 달한다는 장점을 갖는다. 기후 변화의 영향으로 토양 융해 시기는 변화할 것으로 예측되기 때문에 식목일 일자를 변경하고자 할 경우에는 미래의 식재 적합 시기가 지속적으로 앞당겨지는 경향을 반영할 필요가 있다.

Keywords

Acknowledgement

이 논문은 2020년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구이며(NRF-2020S1A5A2A01043062), 박강민(2023)의 석사학위청구논문 일부를 수정·보완한 것임.

References

  1. Baik, J.J., S.K. Cho, S.C. Lee and M.H. Choi. 2019. Analysis on adequacy of the satellite soil moisture data (AMSR2, ASCAT, and ESACCI) in Korean Peninsula: With classification of freezing and melting periods. Korean Journal of Remote Sensing 35(5):625-636.
  2. Barlage, M., X., Zeng, H. Wei and K.E. Mitchell. 2005. A global 0.05° maximum albedo dataset of snow-covered land based on MODIS observations. Geophysical Research Letters 32(17).
  3. Bottcher, K., M. Aurela, M. Kervinen, T. Markkanen, O.-P. Mattila, P. Kolari, S. Metsamaki, T. Aalto, A.N. Arslan and L. Pulliainen. 2014. MODIS time-series-derived indicators for the beginning of the growing season in boreal coniferous forest-A comparison with CO2 flux measurements and phenological observations in Finland. Remote Sensing of Environment 140:625-638. https://doi.org/10.1016/j.rse.2013.09.022
  4. Cho, S.H., H.K. Oh, W. Lee and J.S. Lee. 2021. Study on Phenology Changes Analysis of Indigenous Plant by Climate Change(1). Biological Resources Research Department National Institute of Biological Resources.
  5. Choe, B. 2008. The requisition for timber during the 2nd Sino-Japanese war (1937~1945) by Japanese Government-General in Choson. The Journal for the Studies of Korean History 32:267-305.
  6. Choi, J.S. 1990. The classification of snowfall area and its regional characteristics of South Korea. Journal of the Korean Geographical Society 25:35-48.
  7. Dietz, A.J., C. Wohner and C. Kuenzer. 2012. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sensing 4(8):2432-2454. https://doi.org/10.3390/rs4082432
  8. Gates, D.M. 2012. Biophysical Ecology. Courier Corporation.
  9. Gebeyehu, M.N. and F.H. Hirpo. 2019. Review on effect of climate change on forest ecosystem. International Journal of Environmental Sciences & Natural Resources 17(4):126-129.
  10. Jang, G.S. 2012. Comparing a perspective on the leaf burst timing and leaf growth performance of major plants observed in urban forests. Journal of the Korean Society of Environmental Restoration Technology 15:127-136.
  11. Jee, J.B. and K.T. Lee. 2010. Estimation of rainfall intensity for MTSAT-1R data using microwave rainfall. Korean Journal of Remote Sensing 26(5):511-525.
  12. Jin, M. and S. Park. 2015. Temperature changes of climatic solar terms and their spatiotemporal characteristics in South Korea. Journal of the Korean Geographical Society 50(1):23-36.
  13. Joh, H.K., S.B. Kim, H. Cheong, H.J. Shin and S.J. Kim. 2011. Projection of future snowfall by using climate change scenarios. Journal of the Korean Association of Geographic Information Studies 14(3):188-202. https://doi.org/10.11108/kagis.2011.14.3.188
  14. Johnston, J., V. Maggioni and P. Houser. 2019. Investigating the relationship between satellite-based freeze/thaw products and land surface temperature. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(9):3247-3271. https://doi.org/10.1109/JSTARS.2019.2926942
  15. Kim, H.J., J.K. Hong, S.C. Kim, S.H. Oh and J.H. Kim. 2011. Plant phenology of threatened species for climate change in sub-alpine zone of Korea - Especially on the summit area of Mt. Deogyusan. Korean Journal of Plant Resources 24(5):549-556. https://doi.org/10.7732/KJPR.2011.24.5.549
  16. Kim, H.K. 2022, A Study on Urban Greening in Gyeongseong, Japanese Colonial Era. The Geographical Journal of Korea 56(4):397-408. https://doi.org/10.22905/kaopqj.2022.56.4.7
  17. Kim, Y., J.S. Kimball, J. Glassy and J. Du. 2017. An extended global earth system data record on daily landscape freeze-thaw determined from satellite passive microwave remote sensing. Earth System Science Data 9:133-147. https://doi.org/10.5194/essd-9-133-2017
  18. Kim, Y., J.S. Kimball, J. Du and J. Glassy. 2021. MEaSUREs global record of daily landscape freeze/thaw status, version 05 [1979 to 2020], Boulder Colorado USA: National Snow and Ice Data Center Digital Media.
  19. Kim, Y., J.S. Kimball, J. Glassy and K.C. McDonald. 2022. MEaSUREs Global Record of Daily Landscape Freeze/Thaw Status, Version 5, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.
  20. Kim, Y.C., Y.H. Ji, H.S. Han, J.H. Lee and H.Y. Lee. 2014. Analysis of sea route to the Jangbogo Antarctic research station by using passive microwave sea ice concentration data. Korean Journal of Remote Sensing 30(5):677-686. https://doi.org/10.7780/kjrs.2014.30.5.12
  21. Lee, B.S. 1979. The distribution of the fresh snowfall in South Korea. Geography-Education 9:224-235.
  22. Lee, J.W., S.W. Lee, S.O. Han, S.J. Lee and D.E. Jang. 2011. The impact of satellite observations on the UM-4DVar analysis and prediction system at KMA. Atmosphere 21(1):85-93. https://doi.org/10.14191/ATMOS.2011.21.1.085
  23. Li, T., Y.Z. Chen, L. J. Han, L. H. Cheng, Y.H. Lv, B.J. Fu, X.M. Feng and X. Wu. 2021. Shortened duration and reduced area of frozen soil in the Northern Hemisphere. The Innovation 2(3):100146.
  24. Lim J.H., J.H. Shin and Y.K. Kim. 2005. Earlier leafing of oaks by warmer spring temperature in Korea. Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference 2005(2):147.
  25. Malnes, E., A. Buanes, T. Nagler, G. Bippus, D. Gustafsson, C. Schiller, S. Metsamaki, J. Pulliainen, K. Luojus, H.E. Larsen, R. Solberg, A. Diamandi and A. Wiesmann. 2015. User requirements for the snow and land ice services-CryoLand. The Cryosphere 9:1191-1202. https://doi.org/10.5194/tc-9-1191-2015.
  26. Metsamaki, S.J., S.T. Anttila, H.J. Markus and J.M. Vepsalainen. 2005. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model. Remote Sensing of Environment 95(1):77-95. https://doi.org/10.1016/j.rse.2004.11.013
  27. Metsamaki, S., K. Bottcher, J. Pulliainen, K. Luojus, J. Cohen, M. Takala, O.P. Mattila, G. Sschwaizer, C. Derksen and S. Koponen. 2018. The accuracy of snow melt-off day derived from optical and microwave radiometer data-A study for Europe. Remote Sensing of Environment 211:1-12. https://doi.org/10.1016/j.rse.2018.03.029
  28. Metsamaki, S., O.P. Mattila, J. Pulliainen, K. Niemi, K. Luojus and K. Bottcher. 2012. An optical reflectance model-based method for fractional snow cover mapping applicable to continental scale. Remote Sensing of Environment 123: 508-521. https://doi.org/10.1016/j.rse.2012.04.010
  29. Na, J. 2020. Applied Time Series Analysis. Freeacademy.
  30. Park, K. 2023. Climate Change-Induced Shifts in Soil-Thaw Periods and the Evaluation of Arbor Day's Suitability. The Graduate School. Pusan National University.
  31. Park, S. 2022. Assessment of Facebook Prophet-based forecast models applied to atmospheric PM10 levels in Busan Metropolitan City. The Geographical Journal of Korea 56(4):333-351. https://doi.org/10.22905/kaopqj.2022.56.4.3
  32. Park, S. and S. Lee. 2019. Climatic changes and geographical characteristics of solar term temperatures in the Korean Peninsula. Journal of the Korean Association of Geographic Information Studies 22(3):65-81. https://doi.org/10.14352/jkaie.2019.23.1.65
  33. Park, T., S. Ganguly, H. Tommervik, E.S. Euskirchen, K.A. Hogda, S.R. Karlsen, V. Brovkin, R.R. Nemani and R.B. Myneni. 2016. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters 11(8):084001.
  34. Poyry, J., K. Bottcher, S. Fronzek, N. Gobron, R. Leinonen, S. Metsamaki and R. Virkkala. 2018. Predictive power of remote sensing versus temperature-derived variables in modelling phenology of herbivorous insects. Remote Sensing in Ecology and Conservation 4(2):113-126. https://doi.org/10.1002/rse2.56
  35. Pulliainen, J., M. Aurela, T. Laurila, T. Aalto, M. Takala, M. Salminen, M. Kulmala, A. Barr, M. Heimann, A. Lindroth, A. Laaksonen, C. Derksen, A. Makela, T. Markkanen, J. Lemmetyinen, J. Susiluoto, S. Dengel, I. Mammarella, J.P. Tuovinen and T. Vesala. 2017. Early snowmelt significantly enhances boreal springtime carbon uptake. Proceedings of the National Academy of Sciences 114(42):11081-11086. https://doi.org/10.1073/pnas.1707889114
  36. Rank, R., M. Maneta, P. Higuera, Z. Holden and S. Dobrowski. 2022. Conifer seedling survival in response to high surface temperature events of varying intensity and duration. Frontiers in Forests and Global Change 221.
  37. Seo, H.S., J.M. Park, E.S. Kim and J.S. Lee. 2015. Estimation of forest volumes in the ecosystem region using spatial statistical techniques. Journal of the Korean Association of Geographic Information Studies 18(2):149-160. https://doi.org/10.11108/kagis.2015.18.2.149
  38. Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J. P. Karna, J. Koskinen and B. Bojkov. 2011. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment 115(12):3517-3529. https://doi.org/10.1016/j.rse.2011.08.014
  39. Thum, T., T. Aalto, T. Laurila, M. Aurela, J. Hatakka, A. Lindroth and T. Vesala. 2009. Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables. Tellus B: Chemical and Physical Meteorology 61(5):701-717. https://doi.org/10.1111/j.1600-0889.2009.00441.x
  40. Yun, J.I. 2006. Climate change impact on the flowering season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100. Korean Journal of Agricultural and Forest Meteorology 8(2):68-76.