DOI QR코드

DOI QR Code

Cydonia oblonga Miller fruit extract exerts an anti-obesity effect in 3T3-L1 adipocytes by activating the AMPK signaling pathway

  • Hyun Sook Lee (Department of Food Science & Nutrition, Dongseo University) ;
  • Jae In Jung (Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University) ;
  • Jung Soon Hwang (Research Institute, BnG Inc.) ;
  • Myeong Oh Hwang (Research Institute, BnG Inc.) ;
  • Eun Ji Kim (Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University)
  • Received : 2023.05.11
  • Accepted : 2023.07.13
  • Published : 2023.12.01

Abstract

BACKGROUND/OBJECTIVES: The fruit of Cydonia oblonga Miller (COM) is used traditionally in Mediterranean region medicine to prevent or treat obesity, but its mechanism of action is still unclear. Beyond a demonstrated anti-obesity effect, the fruit was tested for the mechanism of adipogenesis in 3T3-L1 preadipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were cultured for 8 days with COM fruit extract (COME) at different concentrations (0-600 ㎍/mL) with adipocyte differentiation medium. The cell viability was measured using an MTT assay; triglyceride (TG) was stained with Oil Red O. The expression levels of the adipogenesis-related genes and protein expression were analyzed by reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS: COME inhibited intracellular TG accumulation during adipogenesis. A COME treatment in 3T3-L1 cells induced upregulation of the adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation and downregulation of the adipogenic transcription factors, such as sterol regulatory element-binding protein 1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α. The COME treatment reduced the mRNA expression of fatty acyl synthetase, adenosine triphosphate-citrate lyase, adipocyte protein 2, and lipoprotein lipase. It increased the mRNA expression of hormone-sensitive lipase and carnitine palmitoyltransferase I in 3T3-L1 cells. CONCLUSIONS: COME inhibits adipogenesis via the AMPK signaling pathways. COME may be used to prevent and treat obesity.

Keywords

References

  1. Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB, Milani RV. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis 2018;61:142-50. https://doi.org/10.1016/j.pcad.2018.07.003
  2. Seidell JC, Halberstadt J. The global burden of obesity and the challenges of prevention. Ann Nutr Metab 2015;66 Suppl 2:7-12. https://doi.org/10.1159/000375143
  3. Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 2011;50:14-27. https://doi.org/10.1016/j.plipres.2010.10.004
  4. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 2015;7:9453-74. https://doi.org/10.3390/nu7115475
  5. Adamczak M, Wiecek A. The adipose tissue as an endocrine organ. Semin Nephrol 2013;33:2-13. https://doi.org/10.1016/j.semnephrol.2012.12.008
  6. Poojashree MJ, Siddalingaprasad HS, Swetha BR, Shivukumar S. A review on the current drugs and new targets for obesity. J Appl Pharm Res 2020;8:11-21. https://doi.org/10.18231/j.joapr.2019.v.8.i.1.002
  7. Baretic M. Obesity drug therapy. Minerva Endocrinol 2013;38:245-54.
  8. Kang JG, Park CY. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab J 2012;36:13-25. https://doi.org/10.4093/dmj.2012.36.1.13
  9. Hayamizu K, Ishii Y, Kaneko I, Shen M, Okuhara Y, Shigematsu N, Tomi H, Furuse M, Yoshino G, Shimasaki H. Effects of garcinia cambogia (hydroxycitric acid) on visceral fat accumulation: a double-blind, randomized, placebo-controlled trial. Curr Ther Res Clin Exp 2003;64:551-67. https://doi.org/10.1016/j.curtheres.2003.08.006
  10. Semwal RB, Semwal DK, Vermaak I, Viljoen A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia 2015;102:134-48. https://doi.org/10.1016/j.fitote.2015.02.012
  11. Klaus S, Pultz S, Thone-Reineke C, Wolfram S. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes 2005;29:615-23. https://doi.org/10.1038/sj.ijo.0802926
  12. Wang H, Wen Y, Du Y, Yan X, Guo H, Rycroft JA, Boon N, Kovacs EM, Mela DJ. Effects of catechin enriched green tea on body composition. Obesity (Silver Spring) 2010;18:773-9. https://doi.org/10.1038/oby.2009.256
  13. Abdollahi H. A review on history, domestication and germplasm collections of quince (Cydonia oblonga Mill.) in the world. Genet Resour Crop Evol 2019;66:1041-58. https://doi.org/10.1007/s10722-019-00769-7
  14. Zhou WT, Abdurahman A, Abdusalam E, Yiming W, Abliz P, Aji Q, Issak M, Iskandar G, Moore N, Umar A. Effect of Cydonia oblonga Mill. leaf extracts or captopril on blood pressure and related biomarkers in renal hypertensive rats. J Ethnopharmacol 2014;153:635-40. https://doi.org/10.1016/j.jep.2014.03.014
  15. Ashraf MU, Muhammad G, Hussain MA, Bukhari SNA. Cydonia oblonga M., A medicinal plant rich in phytonutrients for pharmaceuticals. Front Pharmacol 2016;7:163.
  16. Silva BM, Andrade PB, Ferreres F, Domingues AL, Seabra RM, Ferreira MA. Phenolic profile of quince fruit (Cydonia oblonga Miller) (pulp and peel). J Agric Food Chem 2002;50:4615-8. https://doi.org/10.1021/jf0203139
  17. Wojdylo A, Oszmianski J, Bielicki P. Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J Agric Food Chem 2013;61:2762-72. https://doi.org/10.1021/jf304969b
  18. Essafi-Benkhadir K, Refai A, Riahi I, Fattouch S, Karoui H, Essafi M. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition. Biochem Biophys Res Commun 2012;418:180-5. https://doi.org/10.1016/j.bbrc.2012.01.003
  19. Pacifico S, Gallicchio M, Fiorentino A, Fischer A, Meyer U, Stintzing FC. Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations. Food Chem Toxicol 2012;50:4130-5. https://doi.org/10.1016/j.fct.2012.07.061
  20. Adiban H, Shirazi FH, Gholami S, Kamalinejad M, Hosseini SH, Noubarani M, Eskandari MR. Chemopreventive effect of quince (Cydonia oblonga Mill.) fruit extract on hepatocellular carcinoma induced by diethylnitrosamine in rats. Int Pharm Acta 2019;2:e2.
  21. Mirmohammadlu M, Hosseini SH, Kamalinejad M, Esmaeili Gavgani M, Noubarani M, Eskandari MR. Hypolipidemic, hepatoprotective and renoprotective effects of Cydonia oblonga Mill. fruit in streptozotocininduced diabetic rats. Iran J Pharm Res 2015;14:1207-14.
  22. Zhou W, Abdusalam E, Abliz P, Reyim N, Tian S, Aji Q, Issak M, Iskandar G, Moore N, Umar A. Effect of Cydonia oblonga Mill. fruit and leaf extracts on blood pressure and blood rheology in renal hypertensive rats. J Ethnopharmacol 2014;152:464-9. https://doi.org/10.1016/j.jep.2014.01.018
  23. Umar A, Iskandar G, Aikemu A, Yiming W, Zhou W, Berke B, Begaud B, Moore N. Effects of Cydonia oblonga Miller leaf and fruit flavonoids on blood lipids and anti-oxydant potential in hyperlipidemia rats. J Ethnopharmacol 2015;169:239-43. https://doi.org/10.1016/j.jep.2015.04.038
  24. Lee HS, Jeon YE, Jung JI, Kim SM, Hong SH, Lee J, Hwang JS, Hwang MO, Kwon K, Kim EJ. Anti-obesity effect of Cydonia oblonga Miller extract in high-fat diet-induced obese C57BL/6 mice. J Funct Foods 2022;89:104945.
  25. Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986;89:271-7. https://doi.org/10.1016/0022-1759(86)90368-6
  26. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  27. Lim SM, Jung JI, Kim NY, Bae JS, Lee HS, Kim EJ. Cyanidine-3-O-galactoside enriched Aronia melanocarpa extract inhibits adipogenesis and lipogenesis via down-regulation of adipogenic transcription factors and their target genes in 3T3-L1 Cells. Food Nutr Sci 2019;10:128-47. https://doi.org/10.4236/fns.2019.102011
  28. Kim YH, Jung JI, Jeon YE, Kim SM, Oh TK, Lee J, Moon JM, Kim TY, Kim EJ. Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes. Nutr Res Pract 2022;16:14-32. https://doi.org/10.4162/nrp.2022.16.1.14
  29. Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2021;48:743-61. https://doi.org/10.1007/s11033-020-06036-8
  30. Jemai R, Drira R, Makni M, Fetoui H, Sakamoto K. Colocynth (Citrullus colocynthis) seed extracts attenuate adipogenesis by down-regulating PPARγ/ SREBP-1c and C/EBPα in 3T3-L1 cells. Food Biosci 2020;33:100491.
  31. Khan N, Maihemuti N, Nuer M, Abudurousuli K, Simayi J, Talihati Z, Han M, Hailati S, Zhou W, Wumaier A. Analysis of major polyphenolic compounds of Cydonia oblonga Miller (Quince) fruit extract by UPLC-MS/MS and its effect on adipogenesis in 3T3-L1 cells. Separations 2022;9:167. https://doi.org/10.3390/separations9070167
  32. Ko JH, Kwon HS, Yoon JM, Yoo JS, Jang HS, Kim JY, Yeon SW, Kang JH. Effects of Polygonatum sibiricum rhizome ethanol extract in high-fat diet-fed mice. Pharm Biol 2015;53:563-70. https://doi.org/10.3109/13880209.2014.932393
  33. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 2003;100:12027-32. https://doi.org/10.1073/pnas.1534923100
  34. Gambero A, Ribeiro ML. The positive effects of yerba mate (Ilex paraguariensis) in obesity. Nutrients 2015;7:730-50. https://doi.org/10.3390/nu7020730
  35. Wong RHF, Sul HS. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol 2010;10:684-91. https://doi.org/10.1016/j.coph.2010.08.004
  36. Guay C, Madiraju SRM, Aumais A, Joly E, Prentki M. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. J Biol Chem 2007;282:35657-65. https://doi.org/10.1074/jbc.M707294200
  37. Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, Cao Q, Atsumi G, Malone H, Krishnan B, et al. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab 2005;1:107-19. https://doi.org/10.1016/j.cmet.2004.12.008
  38. de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 2008;54:945-55. https://doi.org/10.1373/clinchem.2007.100156
  39. Mukherjee B, Hossain CM, Mondal L, Paul P, Ghosh MK. Obesity and insulin resistance: an abridged molecular correlation. Lipid Insights 2013;6:1-11. https://doi.org/10.4137/LPI.S10805
  40. Woods A, Williams JR, Muckett PJ, Mayer FV, Liljevald M, Bohlooly-Y M, Carling D. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Reports 2017;18:3043-51. https://doi.org/10.1016/j.celrep.2017.03.011
  41. Lee J, Park S, Oh N, Park J, Kwon M, Seo J, Roh S. Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2- and AMPK-mediated obesity-associated disorders in high-fat-diet-induced obese C57BL/6J mice. Cell Prolif 2021;54:e13039.
  42. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med 2016;48:e245.