DOI QR코드

DOI QR Code

백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서

Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures

  • 윤성도 (한국생산기술연구원 동남본부) ;
  • 명윤 (한국생산기술연구원 동남본부) ;
  • 나찬웅 (한국생산기술연구원 동남본부)
  • Sung Do Yun (Dongnam Division, Korea Institute of Industrial Technology) ;
  • Yoon Myung (Dongnam Division, Korea Institute of Industrial Technology) ;
  • Chan Woong Na (Dongnam Division, Korea Institute of Industrial Technology)
  • 투고 : 2023.11.28
  • 심사 : 2023.12.19
  • 발행 : 2023.12.31

초록

We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

키워드

과제정보

본 성과물은(논문, 산업재산권, 품종보호권 등)은 농촌진흥청 연구사업(세부과제번호: PJ016994)의 지원에 의해 이루어진 것임.

참고문헌

  1. F. Dawood, M. Anda, G.M. Shafiullah, Hydrogen production for energy: An overview, International Journal of Hydrogen Energy, 45 (2020) 3847-3869.  https://doi.org/10.1016/j.ijhydene.2019.12.059
  2. G. Bayrak, Wavelet transform-based fault detection method for hydrogen energy-based distributed generators, International Journal of Hydrogen Energy, 43 (2018) 20293-20308.  https://doi.org/10.1016/j.ijhydene.2018.06.183
  3. F. Zhang, P. Zhao, M. Niu, J. Maddy, The survey of key technologies in hydrogen energy storage, International Journal of Hydrogen Energy, 41 (2016) 14535-14552.  https://doi.org/10.1016/j.ijhydene.2016.05.293
  4. P.E. Dodds, I. Staffell, A.D. Hawkes, F. Li, P. Grunewald, W. McDowall, P. Ekins, Hydrogen and fuel cell technologies for heating: A review, International Journal of Hydrogen Energy, 40 (2015) 2065-2083.  https://doi.org/10.1016/j.ijhydene.2014.11.059
  5. H. Gu, Z. Wang, and Y. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures, Sensors, 12 (2012) 5517-5550.  https://doi.org/10.3390/s120505517
  6. J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: Overview, Sensors and Actuators B: Chemical, 140 (2009) 319-336.  https://doi.org/10.1016/j.snb.2009.04.026
  7. K. P. Kamloth, Semiconductor junction gas sensors. Chemical Review, 108 (2008) 367-399.  https://doi.org/10.1021/cr0681086
  8. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to? Sensors and Actuators B: Chemical, 121 (2007) 18-35.  https://doi.org/10.1016/j.snb.2006.09.047
  9. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 10 (2010) 2088-2106.  https://doi.org/10.3390/s100302088
  10. Z. Dai, T. Liang, J.H. Lee, Gas sensors using ordered macroporous oxide nanostructures, Nanoscale Advances, 1 (2019) 1626-1639.  https://doi.org/10.1039/C8NA00303C
  11. S. Kumar, S.D. Lawaniya, S. Agarwal, Y.T. Yu, S.R. Nelamarri, M. Kumar, Y.K. Mishra, K. Awasthi, Optimization of Pt nanoparticles loading in ZnO for highly selective and stable hydrogen gas sensor at reduced working temperature, Sensors and Actuators B: Chemical, 375 (2023) 132943. 
  12. H. Zhang, W. Wei, T. Tao, X. Li, X. Xia, Y. Bao, M. Lourenco, K. Homewood, Z. Huang, Y. Gao, Hierarchical NiO/TiO2 heterojuntion-based conductometric hydrogen sensor with anti-CO-interference, Sensors and Actuators B: Chemical, 380 (2023) 133321. 
  13. Z. Cai, J. Park, S. Park, Synergistic effect of Pd and Fe2O3 nanoparticles embedded in porous NiO nanofibers on hydrogen gas detection: Fabrication, characterization, and sensing mechanism exploration, Sensors and Actuators B: Chemical, 388 (2023) 133836. 
  14. N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Sensing characteristics of flame-spray-made Pt/ZnO thick films as H2 gas sensor, Sensors, 9 (2009) 6652-6669.  https://doi.org/10.3390/s90906652
  15. Q.A. Drmosh, Z.H. Yamani, Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles, Ceramic International, 42 (2016) 12378-12384.  https://doi.org/10.1016/j.ceramint.2016.05.011
  16. O. Lupan, V. Postica, N. Wolff, J. Su, F. Labat, I. Ciofini, H. Cavers, R. Adelung, O. Polonskyi, F. Faupel, L. Kienle, B. Viana, T. Pauport'e, Low-temperature solution synthesis of Au-modified ZnO nanowires for highly efficient hydrogen nanosensors, ACS Applied Materials & Interfaces, 11 (2019) 32115-32126.  https://doi.org/10.1021/acsami.9b08598
  17. A. Mirzaei , G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review, Sensors and Actuators B: Chemical, 237 (2016) 749-775.  https://doi.org/10.1016/j.snb.2016.06.114
  18. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Gell, M. Kumar, K. Awasthi, Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method, Sensors and Actuators B: Chemical, 292 (2019) 24-31. 
  19. L. Giancaterini, C. Cantalini, M. Cittadini, M. Sturaro, M. Guglielmi, A. Martucci, A. Resmini, U. Anselmi-Tamburini, Au and Pt nanoparticles effects on the optical and electrical gas sensing properties of sol-gel-based ZnO thin-film sensors, IEEE Sensors Journal, 15 (2015) 1068-1076.  https://doi.org/10.1109/JSEN.2014.2356252