과제정보
본 연구는 정보통신기획평가원의 재원으로 정보통신방송 기술개발사업의 지원을 받아 수행한 연구 과제(No. 2020-0-00096 클라우드에 연결된 개별로봇 및 로봇그룹의 작업 계획 기술 개발)입니다.
참고문헌
- O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp.234-241, 2015.
- H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene parsing network," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.2881-2890.
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, "Swin transformer: Hierarchical vision transformer using shifted windows," In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp.10012-10022, 2021.
- E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, "SegFormer: Simple and efficient design for semantic segmentation with transformers," Advances in Neural Information Processing Systems, Vol.34, pp.12077-12090, 2021.
- C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "PointNet: Deep learning on point sets for 3d classification and segmentation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.652-660, 2017.
- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "PointNet++: Deep hierarchical feature learning on point sets in a metric space," Advances in Neural Information Processing Systems (NeurIPS), Vol.30, pp.5099-5108, 2017.
- Y. Wang, Y. Sun, Z. Liu, and S. E. Sarma, M. M. Bronstein, and J. M. Solomon, "Dynamic graph CNN for learning on point clouds," Journal of ACM Transactions on Graphics, Vol.38, No.5, pp.1-12, 2019. https://doi.org/10.1145/3326362
- H. Lei, N. Akhtar, and A. Mian, "Spherical kernel for efficient graph convolution on 3d point clouds," Journal of the IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.43, No.10, pp.3664-3680, 2020.
- W. Wu, Z. Qi, and L. Fuxin, "PointConv: Deep convolutional networks on 3d point clouds," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.9621-9630, 2019.
- M. Xu, R. Ding, H. Zhao, and X. Qi, "PAConv: Position adaptive convolution with dynamic kernel assembling on point clouds," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.3173-3182, 2021.
- H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, "Point transformer," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp.16259-16268., 2021.
- X. Wu, Y. Lao, L. Jiang, .X. Liu, and H. Zhao, "Point transformer V2: Grouped vector attention and partition-based pooling," arXiv preprint arXiv:2210.05666, 2022.
- M. Jaritz, J. Gu, and H. Su, "Multi-view PointNet for 3d scene understanding," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp.3995-4003, 2019.
- C. Du, M. A. Vega Torres, Y. Pan, and A. Borrmann, "MV-KPConv: Multi-view KPConv for enhanced 3d point cloud semantic segmentation using multi-modal fusion with 2d images," in Proceedings of the European Conference on Product and Process Modeling, 2022.
- A. Dai, and M. Niessner, "3DMV: Joint 3d multi-view prediction for 3d semantic scene segmentation," in Proceedings of the European Conference on Computer Vision (ECCV), pp.452-468, 2018.
- L. Zhao, J. Lu, and J. Zhou, "Similarity-aware fusion network for 3d semantic segmentation," in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.1585-1592, 2021.
- W. Hu, H. Zhao, L. Jian, J. Jia, and T. T. Wong, "Bidirectional projection network for cross dimension scene understanding," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CPVR), pp.14373-14382, 2021.
- A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Niessner, "ScanNet: Richly-annotated 3d reconstructions of indoor scenes," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.5828-5839, 2017.
- A. Boulch, B. L. Saux, and N. Audebert, "Unstructured point cloud semantic labeling using deep segmentation networks," 3dor@ eurographics, Vol.3, pp.17-24, 2017.
- A. Boulch, J. Guerry, B. L. Saux, and N. Audebert, "SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks," Computers & Graphics, Vol.71, pp.189-198, 2018. https://doi.org/10.1016/j.cag.2017.11.010
- F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size," arXiv preprint arXiv:1602.07360, 2016.
- A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. "RangeNet++: Fast and accurate LiDAR semantic segmentation," in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.4213-4220, 2019.
- J. Huang and S. You, "Point cloud labeling using 3d convolutional neural network," in Proceedings of the International Conference on Pattern Recognition (ICPR), pp.2670-2675, 2016.
- A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, M. Niessner, "ScanComplete: Large-scale scene completion and semantic segmentation for 3D scans," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4578-4587, 2018.
- J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. F. Fei, "ImageNet: A large-scale hierarchical image database," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.248-255, 2009.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.
- D. Menini, S. Kumar, M. R. Oswald, E. Sandstrom, C. Sminchisescu, and L. V. Gool, "A real-time online learning framework for joint 3d reconstruction and semantic segmentation of indoor scenes," Journal of IEEE Robotics and Automation Letters, Vol.7, No.2, pp.1332-1339, 2021.