DOI QR코드

DOI QR Code

Frequency analysis of deep curved nonlocal FG nanobeam via DTM

  • S. A. H. Hosseini (Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University) ;
  • O. Rahmani (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan)
  • 투고 : 2022.04.07
  • 심사 : 2023.04.03
  • 발행 : 2023.12.25

초록

In this paper, frequency analysis of curved functionally graded (FG) nanobeam by consideration of deepness effect has been studied. Differential transform method (DTM) has been used to obtain frequency responses. The nonlocal theory of Eringen has been applied to consider nanoscales. Material properties are supposed to vary in radial direction according to power-law distribution. Differential equations and related boundary conditions have been derived using Hamilton's principle. Finally, by consideration of nonlocal theory, the governing equations have been derived. Natural frequencies have been obtained using semi analytical method (DTM) for different boundary conditions. In order to study the effect of deepness, the deepness term is considered in strain field. The effects of the gradient index, radius of curvature, the aspect ratio, the nonlocal parameter and interaction of aforementioned parameters on frequency value for different boundary conditions such as clamped-clamped (C-C), clamped-hinged (C-H), and clamped-free (C-F) have been investigated. In addition, the obtained results are compared with the results in previous literature in order to validate present study, a good agreement was observed in the present results.

키워드

참고문헌

  1. Alizadeh Hamidi, B., Khosravi, F., Hosseini, S.A. and Hassannejad, R. (2020), "Closed form solution for dynamic analysis of rectangular nanorod based on nonlocal strain gradient", Waves Random Complex Media. 1-17. https://doi.org/10.1080/17455030.2020.1843737.
  2. Alizadeh Hamidi, B., Khosravi, F., Hosseini, S.A. and Hassannejad, R. (2020), "Free torsional vibration of triangle microwire based on modified couple stress theory", J. Strain Anal. Eng. Des., 55(7-8), 237-245. https://doi.org/10.1177%2F0309324720922385. https://doi.org/10.1177%2F0309324720922385
  3. Alshorbagy, A.E., Eltaher, M. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Mathem. Modelling. 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  4. Amara, K., Tounsi, A. and Mechab, I. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Mathem. Modelling, 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029.
  5. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
  6. Arikoglu, A. and Ozkol, I. (2010), "Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method", Compo. Struct., 92(12), 3031-3039. http://doi.org/10.1016/j.compstruct.2010.05.022.
  7. Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. http://doi.org/10.1016/j.matdes.2010.08.046.
  8. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-Dimens. Syst. Nanostruct., 41(9), 1651-1655 https://doi.org/10.1016/j.physe.2009.05.014
  9. Batra, R., Porfiri, M. and Spinello, D. (2008), "Vibrations of narrow microbeams predeformed by an electric field", J. Sound Vib., 309(3), 600-612. https://doi.org/10.1016/j.jsv.2007.07.030.
  10. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085.
  11. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Mathem. Comput., 218(14), 7406-7420. http://doi.org/10.1016/j.amc.2011.12.090.
  12. Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.-A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Mathem. Comput., 229(0), 283-295. http://doi.org/10.1016/j.amc.2013.12.072.
  13. Ghadiri, M., Ebrahimi, F., Salari, E., Hosseini, S. and Shaghaghi, G. (2015), "Electro-thermo mechanical vibration analysis of embedded single-walled boron nitride nanotubes based on nonlocal third order beam theory", Int. J. Multiscale Comput. Eng., 13(5). http://doi.org/10.1177/1077546319890170
  14. Hashemi, S.H., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Forced vibration of nanoplate on viscoelastic substrate with consideration of structural damping: An analytical solution", Composite Structures. 133 8-15. https://doi.org/10.1016/j.compstruct.2015.07.068.
  15. Hassannejad, R., Hosseini, S.A. and Alizadeh-Hamidi, B. "Influence of non-circular cross section shapes on torsional vibration of a micro-rod based on modified couple stress theory", Acta Astronautica. 178, 805-812.https://doi.org/10.1016/j.actaastro.2020.10.005
  16. Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Advances in Nano Research. 8(1), 25.https://doi.org/10.12989/anr.2020.8.1.025
  17. Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2020), "Effect of External Moving Torque on Dynamic Stability of Carbon Nanotube", J. Nano Res., 61, 118-135. https://doi.org/10.4028/www.scientific.net/JNanoR.61.118
  18. Jia, X., Yang, J., Kitipornchai, S. and Lim, C.W. (2012), "Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode", Appl. Mathem. Modelling. 36(5), 1875-1884. 10.1016/j.apm.2011.07.080.
  19. Ke, L.-L. and Wang, Y.-S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008Get.
  20. Ke, L.-L., Wang, Y.-S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008.
  21. Khosravi, F. and Hosseini, S.A. (2020), "On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model", Mech. Based Des. Struct. Machines. 1-24
  22. Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020), "Analytical investigation on free torsional vibrations of noncircular nanorods", J. Brazil. Soc. Mech. Sci. Eng., 42(10), 1-10. https://doi.org/10.1007/s40430-020-02587-w.
  23. Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020), "On torsional vibrations of triangular nanowire", Thin-Wall. Struct., 148, 106591. https://doi.org/10.1016/j.tws.2019.106591.
  24. Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020), "Torsional Vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: comparison with hollow elliptical cross section", Europ. Phys. J. Plus. 135(3), 318. https://doi.org/10.1140/epjp/s13360-020-00312-z.
  25. Khosravi, F., Hosseini, S.A. and Hayati, H. (2020), "Free and forced axial vibration of single walled carbon nanotube under linear and harmonic concentrated forces based on nonlocal theory", Int. J. Modern Phys. B. 2050067. https://doi.org/10.1142/S0217979220500678.
  26. Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020), "Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 0954406220903341
  27. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Europ. Phys. J. Plus. 135(2), 183.
  28. Khosravi, F., Hosseini, S.A., Hamidi, B.A., Dimitri, R. and Tornabene, F. (2020), "Nonlocal torsional vibration of elliptical nanorods with different boundary conditions", Vibration. 3(3), 189-203. https://doi.org/10.3390/vibration3030015.
  29. Liu, C., Ke, L.-L., Wang, Y.-S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031.
  30. Malekzadeh, P., Setoodeh, A. and Beni, A.A. (2011), "Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium", Compos. Struct., 93(8), 2083-2089. https://doi.org/10.1016/j.compstruct.2011.02.013.
  31. Niknam, H. and Aghdam, M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023.
  32. Ozdemir, O. and Kaya, M. (2006), "Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289(1), 413-420. https://doi.org/10.1016/j.jsv.2005.01.055.
  33. Rahmani, O., Refaeinejad, V. and Hosseini, S. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct. 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
  34. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307.https://doi.org/10.1016/j.ijengsci.2007.04.004
  35. Roque, C.M.C., Ferreira, A.J.M. and Reddy, J.N. (2011), "Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method", Int. J. Eng. Sci., 49(9), 976-984. http://dx.doi.org/10.1016/j.ijengsci.2011.05.010.
  36. Suddoung, K., Charoensuk, J. and Wattanasakulpong, N. (2012), "Application of the differential transformation method to vibration analysis of stepped beams with elastically constrained ends", J. Vib. Control., https://doi.org/1077546312456581. 1077546312456581
  37. Suddoung, K., Charoensuk, J. and Wattanasakulpong, N. (2014), "Vibration response of stepped FGM beams with elastically end constraints using differential transformation method", Appl. Acoustics. 77, 20-28 https://doi.org/10.1016/j.apacoust.2013.09.018
  38. Thai, H.-T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  39. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. Forum, 492, 255-260. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.492-493.255
  40. Yesilce, Y. and Catal, H.H. (2011), "Solution of free vibration equations of semi-rigid connected Reddy-Bickford beams resting on elastic soil using the differential transform method", Archiv. Appl. Mech., 81(2), 199-213. https://doi.org10.1007/s00419-010-0405-z
  41. Yesilce, Y. and Catal, S. (2009), "Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method", Struct. Eng. Mech., 31(4), 453-475. https://doi.org 10.12989/sem.2009.31.4.453.
  42. Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica. 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2