DOI QR코드

DOI QR Code

Prediction of Pull-Out Force of Steel Pegs Using the Relationship Between Degree of Compaction and Hardness of Soil Conditioned on Water Content

함수비에 따른 토양의 다짐도와 경도의 관계를 이용한 철항의 인발저항력 예측 연구

  • Choi, In-Hyeok (Dept. of Civil and Env. System Eng., Hanyang Univ.) ;
  • Heo, Gi-Seok (Dept. of Civil and Env. System Eng., Hanyang Univ.) ;
  • Lee, Jin-Young (Dept. of Civil and Env. System Eng., Hanyang Univ.) ;
  • Kwak, Dong-Youp (Dept. of Civil and Env. Eng., Hanyang Univ. ERICA)
  • 최인혁 (한양대학교 대학원 건설환경시스템공학과) ;
  • 허기석 (한양대학교 대학원 건설환경시스템공학과) ;
  • 이진영 (한양대학교 대학원 건설환경시스템공학과) ;
  • 곽동엽 (한양대학교 ERICA 공학대학 건설환경공학과)
  • Received : 2023.09.14
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

The Ministry of Agriculture, Food and Rural Affairs has announced design standards for disaster-resilient greenhouses capable of resisting wind speeds with a 30-year frequency to respond to the destruction of greenhouses caused by strong winds. However, many greenhouses are still being maintained or newly installed as conventional standard facilities for the supply type. In these supply-type greenhouses, a small pile called a steel peg is used as reinforcement to resist wind-induced damage. The wind resistance of steel pegs varies depending on the soil environment and installation method. In this study, a correlation analysis was performed between the wind resistance of steel pegs installed in loam and sandy loam, using a soil hardness meter. To estimate the pull-out force of steel pegs based on soil water content and compaction, soil compaction tests and laboratory soil box and field tests were performed. The soil compaction degree was measured using a soil hardness meter that could easily confirm soil compaction. This was used to analyze the correlation between the soil compaction degree in the tests. In addition, a correlation analysis was performed between the pull-out force of steel pegs in the soil box and field. The findings of this study will be useful in predicting the pull-out force of steel pegs based on the method of steel peg installation and environmental changes.

농림축산식품부는 강풍에 의한 비닐하우스의 인발파괴에 대응하기 위해 30년 빈도의 풍속에 대비할 수 있는 내재해형 비닐하우스 설계 기준을 고시하였다. 하지만 여전히 많은 비닐하우스가 기존 규격시설인 농가 보급·지도형으로 유지 및 신설되고 있다. 농가 보급·지도형 비닐하우스에는 인발파괴에 저항하기 위한 보강 수단으로 소형말뚝 종류 중 하나인 철항이 사용된다. 철항의 인발저항력은 토양의 환경과 철항의 관입 형태에 따라 변화한다. 이번 연구에서는 양토와 사양토에 설치되는 철항의 인발저항력을 토양경도계를 사용하여 유추할 수 있는 상관관계를 제시하였다. 토양의 환경인 함수비와 다짐도에 따른 철항의 인발저항력을 유추하기 위해 흙의 다짐시험과 모형토조시험, 현장시험을 수행하였다. 흙의 다짐도를 간단하게 확인할 수 있는 토양경도계를 사용하여 다짐도를 측정하였으며, 이를 이용하여 흙의 다짐시험과 모형토조의 다짐도에 대한 상관관계를 분석하였다. 또한, 모형토조에서의 철항의 인발저항력으로 현장에서의 인발저항력을 추정하는 상관관계를 제시하였다. 이번 논문의 결과는 환경 변화에 따른 철항의 관입 형태별 인발저항력의 예측에 활용될 것으로 기대된다.

Keywords

Acknowledgement

이번 연구는 농촌진흥청 공동연구사업(세부과제번호: RS-2021-RD009628)의 지원으로 수행되었습니다.

References

  1. Kim, K., Park, D., Yoo, J., and Lee, J. (2013), "Permeability and Consolidation Characteristics of Clayey Sand Soils", Journal of the Korean geotechnical society, Vol.29, No.3, pp.61-70. (in Korean)  https://doi.org/10.7843/KGS.2013.29.3.61
  2. Kim, M. (2022), "Effects of Uplift Resistance on Continuous-pipe-foundation of Single-span Plastic Greenhouse by Steel Plate Pipe Connector", Agriculture, Vol.20, No.20, pp.1998. 
  3. Korean Soil Information System (KSIS) (2023), "Categorization of Agricultural Soil by Type in Republic of Korea", KSIS, Available at: https://soil.rda.go.kr/soil/soilact/recommend.jsp (Accessed: December 13, 2022). (in Korean) 
  4. Korean Statistical Information Service (KOSIS) (2021), "Area of agriculture region by annual type of facility in Republic of Korea, Korean Statistical Information Service", KOSIS, Available at: https://kosis.kr (Accessed: October 20, 2023). (in Korean) 
  5. Korean Statistical Information Service (KOSIS) (2023a), "Area of Agriculture Region by Year in Republic of Korea, Korean Statistical Information Service", KOSIS, Available at: https://kosis.kr (Accessed: May 10, 2023). (in Korean) 
  6. Korean Statistical Information Service (KOSIS) (2023b), "Overall Status of Greenhouse of Facility Vegetables by Region in Republic of Korea", KOSIS, Available at: https://kosis.kr (Accessed: May 10, 2023). (in Korean) 
  7. KS D 3504, "Steel Bars for Concrete Reinforcement", Korea Industrial Standards Commission, Korean standards, Republic of Korea. (in Korean) 
  8. KS F 2312, "Test Method for Soil Compaction in Laboratory", Korea Industrial Standards Commission, Korean standards, Republic of Korea. (in Korean) 
  9. KS F 2314, "Standard Test Method for Unconfined Compression Test of Soils", Korea Industrial Standards Commission, Korean standards, Republic of Korea. (in Korean) 
  10. KS F 2324, "Unified Soil Classification System", Korea Industrial Standards Commission, Korean standards, Republic of Korea. (in Korean) 
  11. KS F 2343, "Test Method for Direct Shear Test of Soil under Consolidated Drained Conditions", Korea Industrial Standards Commission, Korean standards, Republic of Korea. (in Korean) 
  12. KS F 2346, "Test Method for Unconsolidated Undrained Strength of Cohesive Soils in Triaxial Compression Test", Korea Industrial Standards Commission, Korean standards, Republic of Korea. (in Korean) 
  13. Lee, B. G., Yun, S. W., Choi, M. K., Lee, S. Y., Moon, S. D., Yu, C., and Yoon Y. C. (2014), "Uplift Bearing Capacity of Spiral Steel Peg for the Single Span Greenhouse", Journal of bio-environment control, Vol.23, No.2, pp.109-115. (in Korean)  https://doi.org/10.12791/KSBEC.2014.23.2.109
  14. Lee, W., Woo, J., Lee, H., and Shin, K. (2023), "Analysis of Uplift Capacity on Single-span Greenhouse's Foundation according to Wind Load and Evaluation of Reinforcing Methods", Journal of the regional association of architectural institute of Korea, Vol.24, No.1, pp.33-39. (in Korean) 
  15. Leonards, G. A., Holtz, R. D., and Cutter, W. A. (1980), "Dynamic Compaction of Granular Soils", Journal of the Geotechnical Engineering Division, Vol.106, No.1, pp.35-44.  https://doi.org/10.1061/AJGEB6.0000914
  16. Ministry of Agriculture, Food and Rural Affairs (MAFRA) (2014), "Design and Specifications of Standardized Anti-disaster Prototypes for Greenhouses", MAFRA, Specification 2014-78, Republic of Korea. (in Korean) 
  17. Rural Development Administration (RDA) (2003), "Design and Specifications of Supply Type Greenhouses," RDA. (in Korean) 
  18. Rural Development Administration (RDA) (2017), "Rural Development Administration Press Releases," RDA, Available at: https://www.rda.go.kr (Accessed : July 19, 2017). (in Korean) 
  19. Ryu, H. R., Gwak, S. C., Choi, M. J., Cho, M. W., Yu, I. H., and Shin, Y. A. (2015), "Analysis of Climatic Disaster Condition on Plastic Greenhouse", Proceedings of Korean Society for Agricultural Machinery, Jeonju-si, pp.379-380. (in Korean) 
  20. US Dept. of Agriculture. Soil Conservation Service (USDA) (1975), "Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys", USDA. 
  21. Yoon, Y. C., Lee, K. H., and Yu, C. (2003), "A Study on the Uplift Capacity Improvement of Pipe-framed Greenhouse Foundation Using Circular Horizontal Anchors", KCID journal, Vol.10, No.2, pp.55-61. (in Korean) 
  22. You, M. K. and Lee, S. D. (2017), "Pull-out Resistance behavior of the Anchor with the Bump Type Resistors", Journal of the Korean geotechnical society, Vol.33, No.11, pp.35-43.  https://doi.org/10.7843/KGS.2017.33.11.35
  23. You, S. K., Hong, G., and Jeong, M. (2018), "Effect of Relative Density and Fines Content on Pullout Resistance Performance of Drilled Shafts", Journal of the Korean geotechnical society, Vol.34, No.4, pp.37-47. https://doi.org/10.7843/KGS.2018.34.4.37