DOI QR코드

DOI QR Code

Characterizing Multichannel Conduit Signal Properties Using a Ground Penetrating Radar: An FDTD Analysis Approach

FDTD 수치해석을 이용한 다중 관로에 대한 GPR 탐지 신호 특성 분석

  • 류희환 (한국전력공사 전력연구원 구조건설연구실) ;
  • 배주열 (인하대학교 토목공학과) ;
  • 송기일 (인하대학교 토목공학과) ;
  • 이상연 (인하대학교 토목공학과)
  • Received : 2023.11.27
  • Accepted : 2023.12.05
  • Published : 2023.12.31

Abstract

In this study, we explore the use of ground penetrating radar (GPR) for the nondestructive survey of subsurface conduits, focusing on the challenges posed by multichannel environments. A key concern is the shadow regions created by conduits, which significantly impact survey results. The shadow regions, which are influenced by conduit position and diameter, hinder signal propagation, thereby making detection within these regions challenging. Using finite-difference time-domain numerical analysis, we examined the characteristics of conduit signals, which typically manifest in hyperbolic patterns. Particularly, we investigated three conduit arrangements: horizontal, vertical, and diagonal. Automatic gain control was applied to amplify the signals, enabling the analysis of variations in shadow regions and signal characteristics for each arrangement. In the horizontal arrangement, the proximity of the two conduits resulted in the emergence of a new hyperbolic pattern between the existing conduits. In the vertical arrangement, the lower conduit could be detected using hyperbolic signals on either side, but the detection was challenging when the upper conduit diameter exceeded that of the lower conduit. In the diagonal arrangement, signal characteristics varied based on the position of shadow regions relative to the detection range of the equipment. Asymmetrical signal patterns were observed when the shadow regions fell within the detection range, whereas the signals of the two conduits were minimally impacted when the shadow regions were outside the detection range. This study provides vital insights into accurately detecting and characterizing subsurface multichannel conduits using GPR-a significant contribution to the field of subsurface exploration and management.

GPR을 활용한 지중 매설관로의 비파괴 탐사에 있어서 다중 관로의 경우 관로에 의한 음영영역이 탐사결과에 많은 영향을 미친다. 다중 관로의 음영영역은 관로들의 위치 및 직경에 의해 변화되며 음영영역 내에서는 신호가 전파되지 못하기 때문에 탐지가 불가능하다. 본 연구에서는 FDTD 수치해석을 활용하여 다중 관로의 배치 및 직경에 따라 쌍곡선 형태로 나타나는 관로신호의 특성을 분석하였다. 관로의 배치는 수평, 수직, 대각 배치로 총 3가지 형태에 대한 분석을 수행하였으며, AGC를 활용하여 신호를 증폭하고 각각의 배치형태에서 나타나는 음영영역과 신호 특성의 차이를 분석하였다. 수평 배치에서는 두 관로가 근접할수록 두 쌍곡선 형태 사이에 새로운 쌍곡선 형태가 나타난다. 수직 배치에서는 쌍곡선 좌우 신호가 탐색 가능하여 이를 활용하면 하단 관로를 탐지가능할 것으로 보이나, 상단 관로의 직경이 하단 관로보다 큰 경우에는 탐지가 힘들 것으로 판단된다. 대각 배치의 경우, 지표면의 음영영역의 위치에 따라 다른 특성을 보인다. 장비의 가탐범위 내에 음영영역이 존재하는 경우 신호의 비대칭형태의 신호 특성을 보이며, 음영영역이 가탐범위 외부에 존재하는 경우에는 두 관로의 신호 특성에 영향을 거의 미치지 않는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 한국전력공사 자체연구개발과제(R21SA02)의 지원을 받아 수행되었습니다. 이에 감사드립니다.

References

  1. Al-Nuaimy, W., Huang, Y., Nakhkash, M., Fang, M., Nguyen, V., and Eriksen, A. (2000), "Automatic Detection of Buried Utilities and Solid Objects with GPR Using Neural Networks and Pattern Recognition", Journal of applied Geophysics, Vol.43, No.2-4, pp.157-165.  https://doi.org/10.1016/S0926-9851(99)00055-5
  2. Bae, B., Ahn, J., Jung, H., and Yoo, C. K. (20 23), "Detection of Steel Ribs in Tunnel GPR Images Based on YOLO Algorithm", Journal of the Korean geotechnical society, Vol.39, No.7, pp.31-37.  https://doi.org/10.7843/KGS.2023.39.7.31
  3. Dondurur, D. (2018), Acquisition and processing of marine seismic data, Elsevier, pp.213-315. 
  4. Giannopoulos, A. (1998), "The investigation of transmission-line matrix and finite-difference time-domain methods for the forward problem of ground probing radar", Doctor of Philosophy, University of York, pp.1-258. 
  5. Go, G.-H. and Lee, S. J. (2021), "A Study on Numerical Analysis for GPR Signal Characterization of Tunnel Lining Cavities", Journal of the Korean geotechnical society, Vol.37, No.10, pp.65-76.  https://doi.org/10.7843/KGS.2021.37.10.65
  6. Hong, S. H. (2005), "Use of GPR (Ground Penetrating Radar)", Korea Construction Saftey Association, Vol.32, pp. 62-66. (in Korean) 
  7. Hong, W.-T., Kang, S., and Lee, J.-S. (2015), "Application of Ground Penetrating Radar for Estimation of Loose Layer", Journal of the Korean geotechnical society, Vol.31, No.11, pp.41-48.  https://doi.org/10.7843/KGS.2015.31.11.41
  8. Hwang, G. W. and Song, H. Y. (2019), KISTEP Technology trend brief: Underground space development trends, 14, K. I. o. S. T. E. a. Planning3-19. (In Korean) 
  9. Kim, D. H. and Yang, D. Y. (1997), "Analysis of Junction Circulator Using FDTD", Journal of Research Institute of Industrial Technology, Vol.8, No.2, pp.44-50.
  10. 10 . Lee, S. Y., Song, K.-i., Ryu, H. H., and Kang, K. N. (20 22), "The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis", Journal of the Korean Geo-Environmental Society, Vol.23, No.8, pp.29-36.  https://doi.org/10.14481/JKGES.2022.23.8.29
  11. Ni, S.-H., Huang, Y.-H., Lo, K.-F., and Lin, D.-C. (2010), "Buried Pipe Detection by Ground Penetrating Radar Using the Discrete Wavelet Transform", Computers and Geotechnics, Vol.37, No.4, pp.440-448.  https://doi.org/10.1016/j.compgeo.2010.01.003
  12. Peplinski, N. R., Ulaby, F. T., and Dobson, M. C. (1995), "Dielectric Properties of Soils in the 0 .3-1.3-GHz Range", IEEE transactions on Geoscience and Remote sensing, Vol.33, No.3, pp.803-807.  https://doi.org/10.1109/36.387598
  13. Warren, C., Giannopoulos, A., gprMax User Guide, https://www.gprmax.com/ (Apr 06, 2023). 
  14. Yang, D., Zhu, Z., Zhang, J., and Liang, B. (2021), "The Overview of Human Localization and Vital Sign Signal Measurement Using Handheld IR-UWB Through-Wall Radar", Sensors, Vol.21, No.2, pp.1-31.  https://doi.org/10.1109/JSEN.2020.3039123
  15. Yuan, C., Li, S., Cai, H., and Kamat, V. R. (2018), "GPR Signature Detection and Decomposition for Mapping Buried Utilities with Complex Spatial Configuration", Journal of Computing in Civil Engineering, Vol.32, No.4, pp.1-15. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000764