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SCREEN GENERIC LIGHTLIKE SUBMERSIONS

URAV SHARM NGEET KUMAR*, AND DINESH KUMAR SHARM
GAURAV SHARMA, SANG KuMAR*, AND DINESH KUMAR SHARMA

Abstract. We introduce the study of a new class of a lightlike submer-
sion ¢ : K1 — K' from a screen generic lightlike submanifold of an indef-
inite Kaehler manifold K9 onto an indefinite almost Hermitian manifold
Kl, and show that for this case K must be an indefinite Kachler man-
ifold. Then, we derive a relationship between the holomorphic sectional
curvatures of Ko and K’ Finally, we present a classification theorem for
a screen generic lightlike submersion, giving the relationship between the
sectional curvatures of the total space K2 and the fibers.

1. Introduction

The theory of Riemannian and semi-Riemannian submersions has emerged
as one of the most fruitful areas of research in differential geometry, and its con-
tribution to the advancement of the subject has been significant. The geometry
of submersions is observed to have a wide range of applications in differential
geometry and theoretical physics, including the Kaluza-Klein theory, Yang-
Mills theory, supergravity, and superstring theory (for details, see [2], [10] and
[13)).

The concept of Riemannian submersions was introduced and developed by
O’Neill [15] and Grey [8]. A Riemannian submersion ¢ : K; — K’ natu-
rally generates two distributions on K7, referred as the horizontal and vertical
distributions, respectively. For a Riemannian submersion, the integrability of
vertical distribution is necessary, giving rise to the fibres of the submersion,
which are closed submanifolds of K;. Then Kobayashi [11] observed that for
a C'R-submanifold of a Kaehler manifold, the totally real distribution is al-
ways integrable. Kobayashi noted this similarity between the total space of a
Riemannian submersion and a C'R-submanifold, and defined the notion of a
C R-submersion.

On the other hand, Sahin [17] introduced a new kind of submersion, specifi-
cally, a lightlike submersion defined from a semi-Riemannian manifold onto an
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r-lightlike manifold. To address the comparable situation for a screen generic
lightlike submanifold of an indefinite Kaehler manifold, we have used the same
approach and introduced a new class of a lightlike submersion, which is called
a screen generic lightlike submersion. As we know in case of a screen generic
lightlike submanifold, the radical distribution Rad(TK,) = S(TK;)NS(TK{)
is invariant and there exists a sub-bundle Dy of S(TK;) such that Dy =
S(TK1)NJS(TKy). In this way, we find a distribution D = Dy L Rad(T K1),
which is invariant in S(T'K;). Consequently, there exists a complementary
distribution D’ of S(TK7) such that S(TK,) =D @ D'.

One challenge to define a screen generic lightlike submersion ¢ : K3 — K /,
where K7 is a screen generic lightlike submanifold of an indefinite Kaehler
manifold K5 and K’ is an indefinite almost Hermitian manifold, is that in this
case the distribution D’ may not be integrable to satisfy the condition of a
submersion. To overcome this challenge, we presume that the distribution D’
is integrable. Literature suggests the study of lightlike submersions has many
applications across a variety of fields, and a very limited number of reports are
available on this subject. This motivated us to introduce and investigate the
concept of screen generic lightlike submersions.

This paper is organised as follows: In Section 2, we recall the basic theory
of a lightlike submanifold given by Duggal et. al. [4]. In Section 3, after
defining a screen generic lightlike submanifold, we review some basic theorems
on integrability of distributions D and D’. In Section 4, a screen generic
lightlike submersion ¢ is defined from a screen generic lightlike submanifold
K7 of an indefinite Kaehler manifold K5 onto an indefinite almost Hermitian
manifold K. Furthermore, we prove that if an indefinite almost Hermitian
manifold K admits a lightlike submersion ¢ : K1 — K " of a screen generic
lightlike submanifold K; of an indefinite Kaehler manifold K5 then K " must
be an indefinite Kaehler manifold. Also the relation between the holomorphic
sectional curvature of K5 and that of K " is established.

2. Preliminaries

2.1. Lightlike Submanifolds

Let (K7, g1) be an isometrically immersed submanifold of a semi-Riemannian
manifold (K3, g2) of constant index ¢ such that m,n > 1,1 < ¢ <m+n—1.
The metric g; is the induced metric of go on K;. K is called a lightlike sub-
manifold of Ky if the metric g; becomes degenerate on the tangent bundle
TK; of K. Locally, a lightlike vector field ¢ € T'(T'K1),( # {0} exists so that
91(¢,Y2) = 0 for every Y, € I'(T'K;). Then, for each tangent space Ty K, we
have

T,K{ = U{u € TyKs : g2(u,v) =0, Vv € T,Ky,y € K1},
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where Ty K, is an n-dimensional degenerate subspace of T, K. As a result,
even though the subspaces TyK; and TyKi are no longer complimentary, i.e.
T,K1NT,Ki # 0, they are both degenerate and orthogonal. In this case, there
exists a subspace Rad(T, K1) = T,K1 NT,K f, named as the radical subspace
defined as:

Rad(TyKl) = {Cy S TyKl : gl((ya}/Z) = 0, A YQ € TyKl}
Rad(TK,) is known as the radical distribution on K; and K; is referred as an
r-lightlike submanifold of K5, if the mapping

Rad(TK,) :y € K1 — Rad(TyK,),

defines a smooth distribution on K; of rank r > 0. For an r-lightlike subman-
ifold K7, we find S(TK;) is a complementary orthogonal vector subbundle to
Rad(TK,) in TK;, which is a non-degenerate screen distribution. Thus, we
can write
Since S(T'K) is canonically isomorphic to the vector bundle TK; /Rad(T K1),
however, it is not unique. Let us use the notation

(Klag7S(TKl)7S(TK1l))
to represent a 7-lightlike submanifold, where S(TKi-) is a complementary vec-
tor subbundle to Rad(TK;) in TKi .

Theorem 2.1. [4] For an r-lightlike submanifold
(Kl,ga S(TK1)7S(TK1J_))

of a semi-Riemannian manifold (K2, g2), there exists a complementary vector
bundle Itr(TK;) of Rad(TK,) in S(TKi-)t and a basis of T'(ltr(TKy) |.)
consisting of smooth sections {N;} of S(TK{)* |., where u is a coordinate
neighborhood of K; such that

g2(NZaNj) = 07 gQ(N’LaCj) = 6ij7 for Za.] € {1,27..,7’},
where {(1,...,¢ } is lightlike basis of T'(Rad(TK1)).

It follows that there exists a lightlike transversal vector bundle ltr(TK7)
locally spanned by {N;}. Let tr(TK;) and ltr(TK;) be the vector bundles
complementary (but not orthogonal) to TK; in TKs|k, and to Rad(TK7) in
S(TKi), respectively. Then we have

(2) tr(TK,) = ltr(TK,) LS(TK{),
TKQ |K1 = TK1 @t’l“(TKl)
(3) = (Rad(TK,) @ Itr(TK,)) LS(TK,) LS(TK{).
Let

(K1,9,S(TK1),S(TKY))
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be an r-lightlike submanifold of a semi-Riemannian manifold (K3, g2). Consider
the Levi-Civita connection defined on Ky as V. The Gauss and Weingarten
formulae are then derived by using the decomposition Eq. (2) as

vY1Y2 - le}/Z + h(Yla }/2)?

Vy,V =—-AyY; + Vi V,

where {h(Y1,Y2), Vi, V} and {Vy, Y2, AyY1} belong to T'(tr(TK1)) and T(TK,),
respectively. Here, h is a symmetric bilinear second fundamental form on
I'(TK;) and Ay is linear shape operator on Kj. In view of Eq. (3), the
Gauss and Weingarten formulae become

(4) Vy, Y2 = Vy, Yo + h (Y1, Ya) + h* (Y1, V),
(5) Vy, N = —AxY; + Vi, N + D*(Y1, N),
(6) Vy,V = —AvY; + DYV, V) + V3.V,

where Y1,Y, € I'(TK;),N € I'(itr(TKy)) and V € T'(S(TKi")). Further by
employing Eqs. (4)-(6), we derive

(7) 91(AvY1,Ys) = go(h*(Y1,Y2), V) + g2(Ya, D'(Y31,V)),

gQ(DS(YlvN)a V) = gQ(AVYhN)'

If P is considered to be the projection morphism of TK; on S(TK;), then
on the screen distribution S(TK;) of K1, we can introduce few new geometric
objects. Therefore as a result of employing Eq. (2), we have

Vy, PYs = V3, PYy + b*(Y1,Y2),  Vy, ¢ = —AiY1 + Vii,

for any Y7,Y; € I'(TK;) and ¢ € T'(Rad(TK)), where {V;‘/lPYg,AZYl} and
{n*(Y1,Y2), V3 ¢} belong to I'(S(TK1)) and I'(Rad(TK1)), respectively. Us-
ing Eqgs. (4), (5) and (6), we obtain

g2(h (Y1, PY2),C) = g1(AfY1, PY3), g2(h* (Y1, PY2), N) = g1 (AnY1, PY2),

for any Y1,Ys € T'(TK1),¢ € T'(Rad(TKy)) and N € L(ltr(TK7)).
Next, consider V is a metric connection and using Egs. (4) — (6), for Y7,Y2, X €
[(TK,) and V4, Vs € D(tr(TK,)), we obtain

(VYng)(}/é7X) = gQ(hl(Yl7Yé)7X) +g2(hl(}/17X)7}/2>
and
(VY. 92)(V1, Va) = —g2(Av, Y1, Va) — g2(Ay, Y1, V1),

which implies that the transversal linear connection V' on ¢r(T'K;) and the
induced linear connection V on K; are generally not the metric connections.
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Let R and R denote the curvature tensors of V and V, respectively. Then
we have

R(Y1,Y2)X = R(Y1,Y2)X + Apiyy,x)Y2 — Ay, ) Y1 + Ane (v, x) Ya
+Aps (v, ) Y1 + (Vi D) (Y2, X) — (Vy, hY) (Y1, X)
+DY(Y1, h*(Ya, X)) — DY (Ya, h*(Y1, X))
+(Vy1hs)()/2,X) - (vy2hs)(Y17X) + DS(Y17hl(Y27X))
(8) —D*(Ya, b (Y1, X)),
where
(Vy, h*) (Yo, X) = V3, h° (Y2, X) — h*(Vy, Y2, X) — h¥(Y2, Vy, X),
(Vi h)(Yz, X) = Vi, B! (Ya, X) — b (Vy, Ya, X) — b (Ya, Vy, X),
for Y1,Ys, X € T(TK,).

2.2. Indefinite Kaehler Manifold

Definition 2.2. [1] Let K3 be an indefinite almost Hermitian manifold, .J
be an almost complex structure of the type (1, 1) with Hermitian metric go
such that for Y1,Ys € T'(TK3), we have

(9) JP=—1, ga(JV1,JY2) = g2(Y1,Y2).

If V is considered to be a Levi-Civita connection of Ky with respect to ga, then
the covariant derivative of J is defined by

(10) (Vy, J)Ys = Vy, JYs — JVy, Y3,
for any Y1,Ys € T(TK3). Then K is called an indefinite Kaehler manifold, if
(11) (?Y1 j)}/Q = 07

for each Y1,Y; € T'(TK>).

3. Screen Generic Lightlike Submanifold

Definition 3.1. [3] Suppose that K5 is an indefinite Kaehler manifold and
K is a real r-lightlike submanifold of K5. Then we say that K; is a screen
lightlike submanifold of Ky if the following conditions are satisfied:

(A) Rad(TK) is invariant with respect to .J, that is,

J(Rad(TK,)) = Rad(TK,).
(B) There exists a subbundle Dy of S(T'K7) such that

Do = J(S(TK1)) N S(TKy),

where Dy is a non-degenerate distribution on Kj.
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We observe that there exists a complementary non-degenerate distribution
D’ in S(TK;) such that

S(TK1) = Do® D',

where
J(D') ¢ S(TKy) and J(D') ¢ S(TK7).
Let Py, P;, and @ be the projection morphism on Dy, Rad(TK;) and D’,
respectively. Then for each Y; € T'(T'K;), we have
Y1 = RY1+PY1+QY

(12) = PY1+QY,
where D = Dy L Rad(TK3), D is invariant and PY; € T'(D), QY; € T'(D’).
From Eq. (12), we have

JY, = fY1 +wYy,
where fY; and wY; are the tangential and transversal component of JY] re-

spectively. Moreover it is obvious that J(D’) # D’. Whereas, for vector field
Y, € T'(D'), we have

j}/QZf}/Q +WY25

such that fY, € T'(D’) and wY, € T'(S(TKi)). In the same way for V; €
I(tr(TKy)), we have

(13) JVi = EVi + FVj,

where EV] is the tangential part and F'V; is the transversal part of JV;, respec-
tively. Next, we recall the conditions for the integrability of the distributions
Dy, D and D’ associated with a screen generic lightlike submanifold.

Theorem 3.2. [3] Suppose that K, is an indefinite Kaehler manifold and
K, is a real r-lightlike submanifold of K. Then the distribution Dy is integrable
if and only if the following conditions hold:

(1) (T3 JYs — V3, IV, £2) = qu(B( (Y1, TY2) — B (Va, Y1), 2)
and
h (Y1, JYz) = h* (Y2, Y1),
for each Y1,Y, € T'(Dy) and Z € T'(D'). Further, the distribution D is inte-
grable if and only if Eq. (14) holds for each Y1,Y, € T'(D), Z € T(D').

Theorem 3.3. [3] Let K be an indefinite Kaehler manifold and let K, be
a real r-lightlike submanifold of K5. Then the distribution D’ is integrable if
and only if

(15) VzfV—-VvfZ—-AnwZ+ A,zV € F(DI),
for each Z,V € T'(D').
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Definition 3.4. [5] A lightlike submanifold (K1, g) of a semi-Riemannian
manifold (Ks,ge) is totally umbilical in Ky if there is a smooth transversal
vector field H € T'(Itr(T'K1)) on K1, called the transversal curvature vector
field of K1, such that, for each Y1,Ys € T'(TK,),

(16) h(Y1,Ys) = Hg1(Y1,Y2).

It is clear from the Gauss and Weingarten formulae (4) of K5 that K is
totally umbilical if and only if there are smooth vector fields H' € T'(itr(TK,))
and H® € T(S(TKi)) in each coordinate neighbourhood U, such that

hl(i/laYZ) = ngl(Y17Y2)7Dl(Y17W) = 07 hs(}/laYQ) = Hsgl(Y17Y2)?
for each Y1,Ys € I(TK;) and W € T'(S(TK%)).

Theorem 3.5. Suppose that K> is an indefinite Kaehler manifold and K
is a totally umbilical screen generic lightlike submanifold of K. Then H' = 0.

Proof. For Y1,Y2 € T'(Dy), using Eq. (11) along with the hypothesis and
then considering the lightlike transversal components, we get

H'gi(Y1,JYs) = CH'g1(Y1,Y5).

Taking Y7 = JY3 and in view of the non-degeneracy of Dy, above equation
yields that H' = 0. O

4. Screen Generic Lightlike Submersion

Definition 4.1. Assume that Ko is an indefinite Kaehler manifold and
(K1,91, D) is a screen generic lightlike submanifold of Ky such that D' is inte-
grable and (K ’ g2) is an indefinite almost Hermitian manifold. Then a smooth
mapping ¢ : (K1,¢1,D) — (K,,gg) is called a lightlike submersion if

(a) at eachp € K1,V, = ker(¢4), = D',
(b) at every p € K;, the differential operator ¢, restricts to an isometry of
the horizontal space H, = D, onto Ty, K ', that is

91(Y1,Y2) = g2(¢. (Y1), ¢ (Y2))
for any given vector fields Y1,Y, € I'(D).

The restriction of ¢.p, to H,, = S(T'K1), maps the space 1somorph1cally onto
T¢(p)K as the definition implies. Then for any vector Y; € T¢(p)K we note
that the vector Y; € S(TK1), is a horizontal lift of Y;. On the other hand, if
Y1 is a vector field on an open set U of K’ then the horizontal lift Y1 is the

vector field Y; € T(S(TK1)) on ¢~ 1(U) such that ¢.(Y;) = Yi0¢ and is called
the basic vector field.
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Lemma 4.2. Consider a screen generic lightlike submersion ¢ : K1 — K '
defined from a screen generic lightlike submanifold of an indefinite Kaehler
manifold K9 onto an indefinite almost hermitian manifold K "If Y; and Y5 are
basic vector field ¢-related to Y1, Ys, respectively, then

(i) g1(Y1,Ya) = g2(Y1, Y2)o. o
(ii) [Y1,Ys]™ is the basic vector field and ¢-related to [Y7, Ya].
(iii) (VleQ)H is a basic vector field and ¢-related to (Vg/Yg).
(iv) For any vertical vector field V, [Y1, V] is vertical.

Proof. If Y7 and Y, are the basic vector fields of Kj, then (i) obviously
follows from part (b) of the definition (4.1). Given that P and @Q are projections
from T K7 on the distribution of a screen generic lightlike submanifold of an
indefinite Kaehler manifold, D and D’, respectively, then [Y7,Ys] = P[Y1, Ya| +
Q[Y1,Y>]. Since, the horizontal component of [Y7,Y>] which is P[Y1,Y5] is a
basic vector field and correspond to [Y7, Y3], that is
Then from Koszul’s formula, we have

201(Vy, Yo, Z) = Yi(q1(Yz, Z)) + Ya(91(Z,Y1)) — Z(g1(Y1,Y2))
(17) _gl(Y17 [}/27 Z]) + 91(3/27 [Z7 Yl]) + gl(Zﬂ [Y17 }/2])
for any Y1,Y>2, Z € T(D).
Let Y1, Y2, and Z be the horizontal lifts of the vector fields Y7, Y3, and Z,
respectively. Then Y1 (g1(Yz, Z) = Y1(92(Y2, Z)o¢ and
91(Z,[Y1,Ya)) = g2(Z, [Y1, Ya])0o.
Thus from Eq. (17) we obtain
291(V511Y2, Z) = Yi(g2(Ya, Z)o + Ya(g2(Z,Y1)0¢ — Z(g2(Y1,Y2)
0¢ — g2(V1, [Ya, Z])0¢ + g2 (Ya, [Z, Y1]) 0o
+92(Z7 [Yla }/2])092S
(15) — 2(VET2)
Given that Z is an arbitrary vector field and ¢ is surjective, therefore condition

(iif) follows from Eq.(18). Next, let V € T'(D’) then [Y1, V] is ¢ related to [Y7, 0],
which proves (iv) and this concludes the proof. O

Let VX / be the covariant differentiation on K . Then we define correspond-
ing operator vE by assuming
Vi Ya = (Vi )
for any basic vector field Y3 and Y. Thus from (iii) of Lemma (4.2), @{ZIYQ is
a basic vector field and ¢, (V¥ Y2) = qb*(@{fl Ys) = 6117(1 Y,. Thus we have a
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tensor field C, using Eq. (12) as
(19) Vi, Yo = Vi, Yo + C(Y1, Y2)

for any Y1,Ys € I'(D), where C(Y7,Ys) denote the vertical part of V{/?YQ. It
is easy to check that C' is a billinear map from D x D — D’.

Lemma 4.3. The tensor field C is skew-symmetric and satisfies
1
C(Y17 }/2) = §V[Y17 }/2}

Proof. Let Z € T'(D') be any vertical vector field. Then, for any ¥; € T'(D)
consider (Vzg2)(Y1,Y1) = 0, which further implies

0 = Zg(Y1,Y1) =2¢2(VzX, Y1)
= 201(V3'Y1, V1) =201(V' Z — [Y1, Z], Y1)

= 201(V§!Z, Y1) = —201(Z, V§' Y1) = —21(Z,VE Y1 + C(Y1,11))
= _291(ZaC(YiaH))7

Since D’ is non-degenerate distribution, ¢1(Z,C(Y1,Y1)) = 0 if and only if
C(Y1,Y7) = 0, that is, if and only if, C is skew-symmetric. Also for Y7,Y; €
I'(D), we have

Y1,Ys] = VY- VY = (VE Y, - VE'Y) + 011, Ya)
_C(Y27Y1)
= (VE'Y, - VE'Y) +20(V1, Ya).

On comparing the vertical components on both sides, we get

(20) CY1,Ys) = %vm,m.

Next we define a new tensor field T as
(21) VlZ =Ty, Z + (V. 2)Y,

for any Y7 € T'(D) and Z € T'(D’). Clearly, T is a bilinear map defined from
D x D' — D. Since [Y1,Z] = V{/(;Z — VE1Y] is vertical, therefore we have

(22) H(Vy Z) =H(VyY) =Ty, Z.
Lemma 4.4. For each Y1,Ys € I'(D) and Z € T'(D’), we have
(23) 91(Ty, Z,Y2) = —g1(Z,C(Y1, Y2)).
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Proof. For each Y1,Y; € I'(D), Z € T'(D’) and using Eqgs.(21) and (22), we
have

gl(TYIZ,Yé) = Ql(V{?Z’YZ) = gl(?Y1Z7 YQ) = _gl(Zv ?Y1Y2)

= —q(Z,VyYa) = —q1(Z,VE Yo + C(Y1,Y2))
= —q(Z,C(11,Y2)).
Thus, the result follows. O

Theorem 4.5. Suppose that Ko is an indefinite Kaehler manifold and
K, is a screen generic lightlike submanifold of Ko. If a screen generic lightlike
submersion ¢ : K1 — K is defined from K7 onto an indefinite almost Hermitian
manifold K such that D' is integrable, then K " s necessarily an indefinite
Kaehler manifold.

Proof. Let Y1,Y, € T'(D) be basic vector fields. Then from Eqs. (4) and
(19), we have

(24) Uy, Ya = VE ¥y + O(Y1, V) + WL (Y, Ya) + h* (Y4, Ya).
Applying J in Eq. (24), we get
JUnYs = JVE Y+ JOW,Ya) + Jhi (Y1, Ya) + Jh* (Y1, Ya),
= VI Ya+ fOM,Y) + wO(Y1, Ya) + TR\ (Y, V)
(25) +fh* (Y1, Y2).

On replacing Y3 by JY; in Eq. (24), we get
(26) Yy, JYs = VE JY; + C(Y, JYs) + b (Y, JYs) + b (Y3, JY3).
Since K> is an indefinite Kaehler manifold, therefore we have
Vy,JYs = JVy, Ya.
Then from Egs. (25) and (26), we acquire
VE JYy + C(Y1,JYy) + BV, JY2) + h* (Y1, JYa)
= JVE Y + [C(V1,Y2) + wC(V1,Ya) + TR (Y1, Ya) + (Y3, Ya).

On comparing the components of horizontal, vertical and normal vector fields,
we get

(27) VE TV, = JVE Y,
(28) C(Y1,JYs) = fC(Y,Ya) + fh* (Y3, Ya),
(29) hl(leaj}é):jhl(Yl)%%

(30) h*(Y1, JYz) = wC(Y3,Ya).
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From Eq. (27), we have 6{/{1/j}/2 = j@{fl/Yg that is (@{fll J)Ys = 0, which
proves that K " is also an indefinite Kaehler manifold. O

Corollary 4.6. If ¢ : K1 — K  is a submersion of screen generic light-
like submanifold of an indefinite Kaehler manifold onto an indefinite almost
Hermitian manifold such that D’ is integrable, then

C(Y1,JY2) + h(Y1, JY2) = JC(Y3,Yz) + Jh(Y1, Ya).

Proposition 4.7. Suppose that K5 is an indefinite Kaehler manifold and
K, is a totally umbilical screen generic lightlike submanifold of K. If K' is
an indefinite Kaehler manifold such that ¢ : K1 — K "isa lightlike submersion
from K; onto K/, then

TJYIV = jTYl‘/?
for each Y1 € T'(D),V € T'(D').
Proof. Let Y] be a basic vector field, Yo € T'(D),V € T'(D’). Then we have
a(Tr,V,Y2) = g(H(Vy,V),Y2) = g1(V sy, V. Y2)
= qi([/Y1,V]+ Vv JY1,Ya)
= q(VvJY1,Y2) = g1 (VyJY1,Y2)
= q(JVvY1,Ys) = —q1(Vv Y1, JY2)
= —(VyY1,JY3) = —g1(Ty Y1, JY2)
= g(JTyY1,Ys).
Then using non-degeneracy of Dy in S(T'K), we have Ty, V = JTy, V. O

Proposition 4.8. Assume that K is an indefinite Kaehler manifold and

K, is a totally umbilical screen generic lightlike submanifold of Ky. If K " s

an indefinite Kaehler manifold such that ¢ : K1 — K "isa lightlike submersion
from K, onto K', then we have C(JY1, JY3) = C(Y1,Y3).

Proof. For Y1,Y, € I'(D),V € I'(D') and using Lemma (4.4) and Eq. (22),
we have

g (V,C((JY1,JY2)) = —gi(T5y,V,JY2) = —g1(JTyYy, JY3)
= —q(TyY1,Y2) = —1(Ty, V. Y2)
Then using the non-degeneracy of D’, we have C(JY1,JY3) = C(Y1,Y3). O
Corollary 4.9. For horizontal vector field Y1 and Y,, we have
C(Y1,JYs) = —C(JY1,Ys).
Now for U,V € I'(D’), we define L by
(31) VoV = LUV) + VyV.
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where L(U,V) = H(VyV), ViV = V(VyV). For V € T(D'),Y; € T(D),
define A as

(32) VY =H(VeY) + AvYi.
Now for basic vector field Y7 and V € T'(D’),

H(VvY1) =H(Vy, V) =Ty, V.
Thus from Eq. (32), we have

(33) VY1 =Ty, V + Ay Y.
The operators L and A are related by
(34) g1 (AvY1, W) = —gi1 (L(V, W), Y1).

Theorem 4.10. Suppose that K is an indefinite Kaehler manifold and K
is a totally umbilical screen generic lightlike submanifold of Ky. Let K " be an
indefinite Kaehler manifold and ¢ : K1 — K "bea lightlike submersion from K

onto K' such that D’ is integrable. If H and HX / represent the holomorphic

sectional curvature of Ky and K' respectively, then for any unit basic vector
Yy e T(H) of K1, we have

7 =u5 + 452
Proof. For Y1,Y,, X € T'(D), using Egs. (19) and (21), we have

(35)  Vy Vi X =VE VE X + Ty, C(Ys, X) + (Vy, Vi, X)V,
Replacing Y7 with Y5 in Eq. (35), we have

(36) Vv,V X = VE VE X + Ty C(Y1, X) + (Vy, Vv, X)Y,
Also
(37) Viviva X = Vi, v X +272(Y1,Y2) + (Viy, vy X)Y,
Further using Egs. (35)-(37), we have

RE\(Y,Y2)X = (RE (V1,Y2)X))" + TxC(Yy, X) — Ty C (Y1, X)
(38) —2T5(Y1,Ys) + (RE (1, Y2) X)Y,

where (RKI (Y1,Y2)X))* denotes the basic vector field of K corresponding to
RX (Y1,Y3)X), therefore using Eq. (38) in Eq. (8), we get

RVLY2)X = (RX (Vi,Y2)X))" + TxC(Yz, X) — Ty C(Yy, X)
—2T7C(Y1,Y2) + Api(vy,x) Yo — Apigyy x) Y1 +
Apsvy, )Yz = Aps(va, ) Y1 + (Vy, Y (Y2, X) —
(Vv h) (Y1, X) 4+ D' (Y1, h* (Ya, X)) — D' (Ya, (Y1, X))
+(Vy, h¥)(Yz, X) — (Vy,h*) (Y1, X) + D*(Y1, h (Y, X))
(39) +D*(Ya, b (Y1, X)) + (R(Y1,Y2) X)V.
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Now for basic vector field W € I'(D), we have
R(Y1,Y2, X, W) = g1(R(Y1,Y2) X, W),
therefore using Eq. (39), we get
R(Y1,Y5, X, W) = 91((RK (Y1,Y2) X)), W) + g1 (Tx C (Y2, X), W)
—1(TyC(Y1, X), W) = 291 (T C(Y1,Y2), W)
+91(Ani vy, x) Y2, W) = g1 (Apit (v, x) Y1, W)

(40) +91(Aps (vi, x) Y2, W) — g1(Aps (v, x) Y1, W),
Now using Lemma, (4.4), we have

(41) 91 (TxC(Y2, X), W) = —g1(C (Y2, X), C(Y1, W)),

(42) g(TyC(Y1, X), W) = —g1(C(Y1, X), C (Y2, W),

and

(43) 91(TzC(Y1,Y2), W) = —g1(C (Y1, Y2), C(X, W)).

?in():e K is totally umbilical, thus using Eq. (5), we have

44

gl(Ahl(Yl,X)YZa W)= _gl(vyhl(YhX)? W)= gl(hl(YhX)a vYI/V) =0.

Similarly, we have

(45) 91(Api(vy,x)Y1, W) = 0.

Also we have

(46) 91(Aps vy, x) Y2, W) = ga(h* (Yo, W), h*(Y1, X))
and

(47) 91(Ans(vo, x) Y1, W) = go(h* (Y1, W), h* (Y2, X)).

Now using Eqgs. (41) - (47) in Eq. (40), we get

R(V.Ye, X W) = R¥ (V.Y X, W) — g:(C(¥a. X), C(¥1, W)
+91(C(V1, X), C(Y2, W))
+291(C(Y1,Y2), C(X,W))
+92(h* (Y2, W), hS(Yh )
(48) —g2(h* (Y1, W), h* (Y2, X).
Now putting Yo = JY1, X = Y1, W = JY] in Eq. (48) and using skew symmet-
ric property of C along with Egs. (28) and (30), we get
R, JYL, Y1, JY1) = RE (Y1, JV1, Y1, JV1) — qu(C(JY2, V),
C(Y1,JY1)) +2g1(C(Y1, JY1),C(Y1, JY1))
(49) +g2(h*(JY1, JY1), h*(Y1, Y1),
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Since
O(le, Yl) = _C(Y17 le)a gl(C(Y17 jY1)7 C(Y17 j)/l))
= g1(Jh*(Y1, Y1), Jh*(Y1, 1))
= g1 (h*(Y1,Y1),h% (Y1, Y1),

using this together with hypothesis and Proposition (4.8), we have
R(Yl, le,Yl, le) = RK (Yl, le,Yly jyl) +4HHS||27
that is ,
H=H" +4||H°|]*.
O

Theorem 4.11. Suppose that K is an indefinite Kaehler manifold and K
is a totally umbilical screen generic lightlike submanifold of Ko. If K " is an
indefinite Kaehler manifold such that ¢ : K1 — K "isa lightlike submersion
from K7 onto K’ such that D' is integrable, then the sectional curvature of Ko
and of the fibre are related by

R(ZAW) = R(ZAW) = gi(L(Z,W), L(W,2))
+91(L(W, W), L(Z, Z)),
where Z,W € T'(D’).
Proof. For Z,W,V € I'(D'), using Egs. (31) and (32) we have
R(Z,W)V = VzVwV =VwVzV = VizwV
= AZL(W,V)+VzVwV
~AwL(Z,V) = VwVzV = VizwmV
~+horizontal part
= R(ZW)V + AzL(W,V) - AwL(Z,V)
(50) +horizontal part.
Let Z,W,V,S € I'(D’) and using Egs. (31)-(34) in Eq. (50), one has

R(Z,W,V,S) = g(R(ZW)V,S) =g (R(Z W)V + AzL(W,V)
~AzL(W,V),S)
= g(R(Z,W)V,S) + g1 (AzL(W, V), S)
_gl(AWL(Zvv)vs)
= R(ZW,V,8) - gi(L(Z,8), L(W,V))
+g1(L(W, S), L(Z,V).

Taking V = Z and S = W in above equation, we acquire

R(ZW,Z,W) = R(ZW,ZW)—aq(L(Z,W),LW,Z))
(51) +91(L(W5W)’L(sz)'
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From Eq. (8), setting Y1 = Z,Y> = W, we obtain
R(Z,W)Z = R(ZW)Z+ ApzW — Anw,z)Z + Aps(z,2)W
~Anw,z)Z + (V2 (W, Z) = (Vwh')(Z, Z)
+D(Z,h* (W, Z)) = D'(W, h*(Z, Z)) + (Vzh°)(W, Z)
—(Vwh*)(Z, Z) + D*(Z.1(W, 2)) + D*(W, (2. Z)),

Then considering the inner product of the above equation with W € T'(D’), we
have

R(Z,W,Z,W) = (R(Z WHZ,W) = g1 (R(Z,W)Z, W)

g1(A hi(Z, Z)W W) — gl(Ahl(W,Z)Zv W)

91 (A (2.2 W W) — g1(Aps(w,2)Z, W)
91((Vzhl)(W Z),W) = 1 (Vwh')(Z, Z), W)
91(D(Z,h*(W, 2)), W) = g1 (D"(W,h*(Z, Z)), W)

(

(

(

+ + +

a(Vzh*) (W, 2), W) — gl(Dl(W h*(Z,2)),W)
+g1 (Vzhs)(W Z),W) —a(Vwh*)(Z,Z),W)
+91(D*(Z,WX(W, Z)), W) + g1 (D*(W, b} (Z, Z)), W),

which further becomes

R(Z,W,Z,W) = R(ZW,ZW)+ gi(Anz.2W,W)
1A w,2y 2, W) + g1(Ans(z,2yW, W)
(52) —91(Aps(w,2y 2, W).
Using Egs. (7) and (51) in Eq. (52), we get

R(ZW,Z,W) = R(Z,W,Z,W)— gi(L(Z,W),L(W, Z))
+91 (LW, W), L(Z, Z) + g1(Api (2,20 W. W)
—91(Aniw,2)Z, W) + g1 (h*(W, W), h*(Z, Z))

(53) 791(hs(Za W)7hS(Z7W))

As K is a totally umbilical lightlike manifold, therefore from theorem (3.5)
and h*(Z, W) = H®g1(Z,W), thus Eq. (53) reduces to
R(ZW,Z,W) = R(ZW.Z,W)~g(L(Z,W),L(W, Z))
Thus the proof follows. O
Theorem 4.12. Let Ko be an indefinite Kaehler manifold and K, be a to-

tally umbilical screen generic lightlike submanifold of Ky. If K " is an indefinite
Kaehler manifold such that ¢ : K1 — K'isa lightlike submersion from K;
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onto K', then for Y1,Y, € T(D) and Vi, Va € T(D')

R(Y1,V1,Y2,Va) = gi(Ty,Va, P(V,Y2)) — 91(Av, Y2, QVy, Va)
~u(L(VA, V2), V5 Ya) + 01 (L([¥3, Y2, V2), Y2)
+91(Vv, O (Y1, Y2), Vo) + g (R (V1, W), h*(Y1,Y2)).

Proof. For Y1,Y, € T(D) and V4, V2 € T'(D'), we have

(54) Vy, Vi, Yo = C(Y1,H(V, Ya) + Vy, (Ay, Y2) + horizontal part.
Similarly,
(55) Vv, Vy, Yy = Avlﬁ{fl,ﬂ@ + Vy, C(Y1,Ys) + horizontal part,
and
(56) Vivi,wi1Y2 = Ay, ,v,1Y2 + horizontal part.
We know that
R(Y1,V1)Ya = Vy, Vy, Yo + Vi, Vy, Yo — Viy, 11 Y2,
further using Egs. (54) - (56) in above equation, we acquire
R(Yi,)Ya = C(Yi,H(Vy,Y2) + Vi (AnYa) + Ay, VE Yy
+@V1C’(Y1, Y2) — Ay, ,v,1Y2 + horizontal part.

Now taking the inner product of the above equation with V5 € T'(D’) and using
Eqgs.(23) and (34), we obtain
R(Y1,V1,Y2, Vo) = gi(R(Y1,V1)Y2,V2)
= gl(C(Y1,H(VV1}/2)),V2) +gl(vY1(AV11/2)7‘/2>
+91(Av, V3§, Y2, V2) + g1(Vy, C (Y1, Y2), V2)
—91(Apyy v Yo, Va)
= gl(Tylvéa H(VV1}/2)) + gl(vY1AV1Yéa VvQ)
_gl(L(‘/l’ ‘/2)7 VY1Y2) + gl(L(D/la V1]7 ‘/2)3 }/2)

(57) +91(Vy, C(Y1,Yz), Va).
In Eq. (8), setting Y5 = V] and X = Y3, one has
R(Yh Vvl)YQ == R(Yh Vl)YQ + Ahl(y17y2)V1 - Ahl(Vl,YQ)Yl

+Aps (v, y) V1 — Ans (v, y) V1
+(Vy, b (W1, Y2) = (Vv B (Y1, Ya)
+D' (Y1, h*(V1,Y2)) — D' (1, h* (Y1, Ya))
H(Vy, %) (V1,Y2) = (Vy, h¥)(Y1, Y2)

(58) +D°(Y1, 1 (V1,Y2)) — D*(Vi, b (Y1, Y2)).
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Now using Eq. (58), we have
R(Y1,V1,Y2,V2) = gi(R(Y1,V1)Y2, V)
= R(Y1,V1,Y2,Va) + g1(Ani(vy vo) V1, Vo)
=91 (At vy, v) Y1, Va) + g1(Ans vy v) V1, V2)
(59) —91(Aps (v, v0) Y1, V2).
Using Eq. (57) in Eq. (59), we derive
R(Y1,V1,Y3, Vo) = gl(Tyle,H(Vvlyi)) + 91(Vy, Ay, Y2, V2)
—g1(L(V1, Va), VE Y2) + g1 (L([Y1, Y2, V), Y2)
+91(Vy, CO(Y1,Ya), Vo) + 91(Ani vy ,vo) V1, V2)
=91 (Ant vy, v) Y1, Vo) + g1(Ans vy ) V1, Va)
—91(Aps (v ,va) Y1, V2).
Further using Eq. (7), we acquire
R(Y1,V1,Ys, Vo) = gl(TY1V2,P(VV1Y2)) + 91(Vy, Ay, Y2, V2)
—g1(L(V1,V2), V§ Y2)+91(L([Y1;}/2]7‘/2)a}/2)
+91(Vv, C(Y1,Y2), Va) + g1(Api vy va) Vi, Va)
—91(Ant vy, v2) Y1, Vo) + ga(h*(V1, V2), h* (Y1, Ya))
(

(60) —g2(h*(Y1, V2), h*(V1,Y2)),
Now for Y7,Ys € T'(D) and Vi, V5 € T'(D’), we have
51 (Vy, A Yo, Vo) = g2(Vy, Ay, Yo, Vo) = —g1(Av, Ya, Vy, V)

= —g1(Ay, Y2, Vy, V2)
= 0N (AV1}/27 Qle V2)
Using above result and totally umbilical property of K7, Eq. (60) becomes

R(Y1,V1,Y2, V) = 91(TY1V2’P(VV1Y2)) — g1(Av, Y2, QVy, V2)
—g1(L(V1,Va), V3, Y2)+91(L([Y Ya], V2), Y2)
(61) +91(Vy, C (Y1, Y2), V) + ga(h* (V1, Va), h* (Y1, Y2)).

O

Theorem 4.13. Assume that K is an indefinite Kaehler manifold and K,
is a totally umbilical screen generic lightlike submanifold of K. If K " is an
indefinite Kaehler manifold such that ¢ : K1 — K " be a lightlike submersion
from K onto K /, then

K(}/lavl) = ||TY1V1||2791(L(‘/17V1)76§1 Y1)+91(L([Y17Y1]3V1)7Y1)
+g?(h5(‘/15vl)7h’s(yl7yl))a
where Y1 € I'(D) and V; € T(D").
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we

Proof. For Y1 € I'(D) and V4 € T'(D’), put Y2 = Y1,V = V; in Eq. (61),
get

R(Y1,V1,Y1,Vi) = g(Tyv,2V1,P(Vy,Y1)) — 1(Av, Y1,QVy, 1)
—g1(L(V1, V1), @11/(1 Y1) + g1(L([Y1, Y1), V1), Y1)
+gl(@V10(Y1?Y1)7‘/1)+g?(hs(‘/1a‘/1)7hs(ylyyl))~

Using Eq. (33) and skew-symmetric property of tensor C, the result follows. [
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