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SCREEN GENERIC LIGHTLIKE SUBMERSIONS

Gaurav Sharma, Sangeet Kumar∗, and Dinesh Kumar Sharma

Abstract. We introduce the study of a new class of a lightlike submer-

sion ϕ : K1 → K
′
from a screen generic lightlike submanifold of an indef-

inite Kaehler manifold K2 onto an indefinite almost Hermitian manifold

K
′
, and show that for this case K

′
must be an indefinite Kaehler man-

ifold. Then, we derive a relationship between the holomorphic sectional

curvatures of K2 and K
′
. Finally, we present a classification theorem for

a screen generic lightlike submersion, giving the relationship between the
sectional curvatures of the total space K2 and the fibers.

1. Introduction

The theory of Riemannian and semi-Riemannian submersions has emerged
as one of the most fruitful areas of research in differential geometry, and its con-
tribution to the advancement of the subject has been significant. The geometry
of submersions is observed to have a wide range of applications in differential
geometry and theoretical physics, including the Kaluza-Klein theory, Yang-
Mills theory, supergravity, and superstring theory (for details, see [2], [10] and
[13]).

The concept of Riemannian submersions was introduced and developed by
O’Neill [15] and Grey [8]. A Riemannian submersion ϕ : K1 → K ′ natu-
rally generates two distributions on K1, referred as the horizontal and vertical
distributions, respectively. For a Riemannian submersion, the integrability of
vertical distribution is necessary, giving rise to the fibres of the submersion,
which are closed submanifolds of K1. Then Kobayashi [11] observed that for
a CR-submanifold of a Kaehler manifold, the totally real distribution is al-
ways integrable. Kobayashi noted this similarity between the total space of a
Riemannian submersion and a CR-submanifold, and defined the notion of a
CR-submersion.

On the other hand, Sahin [17] introduced a new kind of submersion, specifi-
cally, a lightlike submersion defined from a semi-Riemannian manifold onto an
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r-lightlike manifold. To address the comparable situation for a screen generic
lightlike submanifold of an indefinite Kaehler manifold, we have used the same
approach and introduced a new class of a lightlike submersion, which is called
a screen generic lightlike submersion. As we know in case of a screen generic
lightlike submanifold, the radical distribution Rad(TK1) = S(TK1)∩S(TK⊥

1 )
is invariant and there exists a sub-bundle D0 of S(TK1) such that D0 =
S(TK1)∩ J̄S(TK1). In this way, we find a distribution D = D0 ⊥ Rad(TK1),
which is invariant in S(TK1). Consequently, there exists a complementary
distribution D′ of S(TK1) such that S(TK1) = D ⊕D′.

One challenge to define a screen generic lightlike submersion ϕ : K1 → K
′
,

where K1 is a screen generic lightlike submanifold of an indefinite Kaehler
manifold K2 and K ′ is an indefinite almost Hermitian manifold, is that in this
case the distribution D′ may not be integrable to satisfy the condition of a
submersion. To overcome this challenge, we presume that the distribution D′

is integrable. Literature suggests the study of lightlike submersions has many
applications across a variety of fields, and a very limited number of reports are
available on this subject. This motivated us to introduce and investigate the
concept of screen generic lightlike submersions.

This paper is organised as follows: In Section 2, we recall the basic theory
of a lightlike submanifold given by Duggal et. al. [4]. In Section 3, after
defining a screen generic lightlike submanifold, we review some basic theorems
on integrability of distributions D and D′. In Section 4, a screen generic
lightlike submersion ϕ is defined from a screen generic lightlike submanifold
K1 of an indefinite Kaehler manifold K2 onto an indefinite almost Hermitian
manifold K

′
. Furthermore, we prove that if an indefinite almost Hermitian

manifold K
′
admits a lightlike submersion ϕ : K1 → K

′
of a screen generic

lightlike submanifold K1 of an indefinite Kaehler manifold K2 then K
′
must

be an indefinite Kaehler manifold. Also the relation between the holomorphic
sectional curvature of K2 and that of K

′
is established.

2. Preliminaries

2.1. Lightlike Submanifolds

Let (Kn
1 , g1) be an isometrically immersed submanifold of a semi-Riemannian

manifold (Km+n
2 , g2) of constant index q such that m,n ≥ 1, 1 ≤ q ≤ m+n−1.

The metric g1 is the induced metric of g2 on K1. K1 is called a lightlike sub-
manifold of K2 if the metric g1 becomes degenerate on the tangent bundle
TK1 of K1. Locally, a lightlike vector field ζ ∈ Γ(TK1), ζ ̸= {0} exists so that
g1(ζ, Y2) = 0 for every Y2 ∈ Γ(TK1). Then, for each tangent space TyK1, we
have

TyK
⊥
1 = ∪{u ∈ TyK2 : g2(u, v) = 0, ∀ v ∈ TyK1, y ∈ K1},
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where TyK1 is an n-dimensional degenerate subspace of TyK2. As a result,
even though the subspaces TyK1 and TyK⊥

1 are no longer complimentary, i.e.
TyK1∩TyK

⊥
1 ̸= 0, they are both degenerate and orthogonal. In this case, there

exists a subspace Rad(TyK1) = TyK1 ∩ TyK
⊥
1 , named as the radical subspace

defined as:

Rad(TyK1) = {ζy ∈ TyK1 : g1(ζy, Y2) = 0, ∀ Y2 ∈ TyK1}.
Rad(TK1) is known as the radical distribution on K1 and K1 is referred as an
r-lightlike submanifold of K2, if the mapping

Rad(TK1) : y ∈ K1 −→ Rad(TyK1),

defines a smooth distribution on K1 of rank r > 0. For an r-lightlike subman-
ifold K1, we find S(TK1) is a complementary orthogonal vector subbundle to
Rad(TK1) in TK1, which is a non-degenerate screen distribution. Thus, we
can write

(1) TK1 = Rad(TK1)⊥S(TK1).

Since S(TK1) is canonically isomorphic to the vector bundle TK1/Rad(TK1),
however, it is not unique. Let us use the notation

(K1, g, S(TK1), S(TK
⊥
1 ))

to represent a r-lightlike submanifold, where S(TK⊥
1 ) is a complementary vec-

tor subbundle to Rad(TK1) in TK⊥
1 .

Theorem 2.1. [4] For an r-lightlike submanifold

(K1, g, S(TK1), S(TK
⊥
1 ))

of a semi-Riemannian manifold (K2, g2), there exists a complementary vector
bundle ltr(TK1) of Rad(TK1) in S(TK⊥

1 )⊥ and a basis of Γ(ltr(TK1) |u)
consisting of smooth sections {Ni} of S(TK⊥

1 )⊥ |u, where u is a coordinate
neighborhood of K1 such that

g2(Ni, Nj) = 0, g2(Ni, ζj) = δij , for i, j ∈ {1, 2, .., r},
where {ζ1, . . . , ζr} is lightlike basis of Γ(Rad(TK1)).

It follows that there exists a lightlike transversal vector bundle ltr(TK1)
locally spanned by {Ni}. Let tr(TK1) and ltr(TK1) be the vector bundles
complementary (but not orthogonal) to TK1 in TK2|K1

and to Rad(TK1) in
S(TK⊥

1 ), respectively. Then we have

(2) tr(TK1) = ltr(TK1)⊥S(TK⊥
1 ),

TK2 |K1 = TK1 ⊕ tr(TK1)

= (Rad(TK1)⊕ ltr(TK1))⊥S(TK1)⊥S(TK⊥
1 ).(3)

Let

(K1, g, S(TK1), S(TK
⊥
1 ))
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be an r-lightlike submanifold of a semi-Riemannian manifold (K2, g2). Consider
the Levi-Civita connection defined on K2 as ∇̄. The Gauss and Weingarten
formulae are then derived by using the decomposition Eq. (2) as

∇̄Y1
Y2 = ∇Y1

Y2 + h(Y1, Y2),

∇̄Y1V = −AV Y1 +∇t
Y1
V,

where {h(Y1, Y2),∇t
Y1
V } and {∇Y1Y2, AV Y1} belong to Γ(tr(TK1)) and Γ(TK1),

respectively. Here, h is a symmetric bilinear second fundamental form on
Γ(TK1) and AV is linear shape operator on K1. In view of Eq. (3), the
Gauss and Weingarten formulae become

(4) ∇̄Y1
Y2 = ∇Y1

Y2 + hl(Y1, Y2) + hs(Y1, Y2),

(5) ∇̄Y1
N = −ANY1 +∇l

Y1
N +Ds(Y1, N),

(6) ∇̄Y1
V = −AV Y1 +Dl(Y1, V ) +∇s

Y1
V,

where Y1, Y2 ∈ Γ(TK1), N ∈ Γ(ltr(TK1)) and V ∈ Γ(S(TK⊥
1 )). Further by

employing Eqs. (4)-(6), we derive

(7) g1(AV Y1, Y2) = g2(h
s(Y1, Y2), V ) + g2(Y2, D

l(Y1, V )),

g2(D
s(Y1, N), V ) = g2(AV Y1, N).

If P is considered to be the projection morphism of TK1 on S(TK1), then
on the screen distribution S(TK1) of K1, we can introduce few new geometric
objects. Therefore as a result of employing Eq. (2), we have

∇Y1PY2 = ∇∗
Y1
PY2 + h∗(Y1, Y2), ∇Y1ζ = −A∗

ζY1 +∇∗t
Y1
ζ,

for any Y1, Y2 ∈ Γ(TK1) and ζ ∈ Γ(Rad(TK1)), where {∇∗
Y1
PY2, A

∗
ζY1} and

{h∗(Y1, Y2), ∇∗t
Y1
ζ} belong to Γ(S(TK1)) and Γ(Rad(TK1)), respectively. Us-

ing Eqs. (4), (5) and (6), we obtain

g2(h
l(Y1, PY2), ζ) = g1(A

∗
ζY1, PY2), g2(h

∗(Y1, PY2), N) = g1(ANY1, PY2),

for any Y1, Y2 ∈ Γ(TK1), ζ ∈ Γ(Rad(TK1)) and N ∈ Γ(ltr(TK1)).
Next, consider ∇̄ is a metric connection and using Eqs. (4) – (6), for Y1, Y2, X ∈
Γ(TK1) and V1, V2 ∈ Γ(tr(TK1)), we obtain

(∇Y1
g2)(Y2, X) = g2(h

l(Y1, Y2), X) + g2(h
l(Y1, X), Y2)

and

(∇t
Y1
g2)(V1, V2) = −g2(AV1

Y1, V2)− g2(AV2
Y1, V1),

which implies that the transversal linear connection ∇t on tr(TK1) and the
induced linear connection ∇ on K1 are generally not the metric connections.
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Let R̄ and R denote the curvature tensors of ∇̄ and ∇, respectively. Then
we have

R̄(Y1, Y2)X = R(Y1, Y2)X +Ahl(Y1,X)Y2 −Ahl(Y2,X)Y1 +Ahs(Y1,X)Y2

+Ahs(Y2,X)Y1 + (∇Y1
hl)(Y2, X)− (∇Y2

hl)(Y1, X)

+Dl(Y1, h
s(Y2, X))−Dl(Y2, h

s(Y1, X))

+(∇Y1
hs)(Y2, X)− (∇Y2

hs)(Y1, X) +Ds(Y1, h
l(Y2, X))

−Ds(Y2, h
l(Y1, X)),(8)

where

(∇Y1h
s)(Y2, X) = ∇s

Y1
hs(Y2, X)− hs(∇Y1Y2, X)− hs(Y2,∇Y1X),

(∇Y1h
l)(Y2, X) = ∇l

Y1
hl(Y2, X)− hl(∇Y1Y2, X)− hl(Y2,∇Y1X),

for Y1, Y2, X ∈ Γ(TK1).

2.2. Indefinite Kaehler Manifold

Definition 2.2. [1] Let K2 be an indefinite almost Hermitian manifold, J̄
be an almost complex structure of the type (1, 1) with Hermitian metric g2
such that for Y1, Y2 ∈ Γ(TK2), we have

(9) J̄2 = −I, g2(J̄Y1, J̄Y2) = g2(Y1, Y2).

If ∇̄ is considered to be a Levi-Civita connection of K2 with respect to g2, then
the covariant derivative of J̄ is defined by

(10) (∇̄Y1 J̄)Y2 = ∇̄Y1
J̄Y2 − J̄∇̄Y1

Y2,

for any Y1, Y2 ∈ Γ(TK2). Then K2 is called an indefinite Kaehler manifold, if

(11) (∇̄Y1 J̄)Y2 = 0,

for each Y1, Y2 ∈ Γ(TK2).

3. Screen Generic Lightlike Submanifold

Definition 3.1. [3] Suppose that K2 is an indefinite Kaehler manifold and
K1 is a real r-lightlike submanifold of K2. Then we say that K1 is a screen
lightlike submanifold of K2 if the following conditions are satisfied:

(A) Rad(TK1) is invariant with respect to J̄ , that is,

J̄(Rad(TK1)) = Rad(TK1).

(B) There exists a subbundle D0 of S(TK1) such that

D0 = J̄(S(TK1)) ∩ S(TK1),

where D0 is a non-degenerate distribution on K1.
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We observe that there exists a complementary non-degenerate distribution
D′ in S(TK1) such that

S(TK1) = D0 ⊕D′,

where

J̄(D′) ⊈ S(TK1) and J̄(D′) ⊈ S(TK⊥
1 ).

Let P0, P1, and Q be the projection morphism on D0, Rad(TK1) and D′,
respectively. Then for each Y1 ∈ Γ(TK1), we have

Y1 = P0Y1 + P1Y1 +QY1

= PY1 +QY1,(12)

where D = D0 ⊥ Rad(TK1), D is invariant and PY1 ∈ Γ(D), QY1 ∈ Γ(D′).
From Eq. (12), we have

J̄Y1 = fY1 + ωY1,

where fY1 and ωY1 are the tangential and transversal component of J̄Y1 re-
spectively. Moreover it is obvious that J̄(D′) ̸= D′. Whereas, for vector field
Y2 ∈ Γ(D′), we have

J̄Y2 = fY2 + ωY2,

such that fY2 ∈ Γ(D′) and ωY2 ∈ Γ(S(TK⊥
1 )). In the same way for V1 ∈

Γ(tr(TK1)), we have

(13) J̄V1 = EV1 + FV1,

where EV1 is the tangential part and FV1 is the transversal part of J̄V1, respec-
tively. Next, we recall the conditions for the integrability of the distributions
D0, D and D′ associated with a screen generic lightlike submanifold.

Theorem 3.2. [3] Suppose that K2 is an indefinite Kaehler manifold and
K1 is a real r-lightlike submanifold ofK2. Then the distributionD0 is integrable
if and only if the following conditions hold:

(14) g1(∇∗
Y1
J̄Y2 −∇∗

Y2
J̄Y1, fZ) = g1(E(hs(Y1, J̄Y2)− hs(Y2, J̄Y1)), Z)

and

h∗(Y1, J̄Y2) = h∗(Y2, J̄Y1),

for each Y1, Y2 ∈ Γ(D0) and Z ∈ Γ(D′). Further, the distribution D is inte-
grable if and only if Eq. (14) holds for each Y1, Y2 ∈ Γ(D), Z ∈ Γ(D′).

Theorem 3.3. [3] Let K2 be an indefinite Kaehler manifold and let K1 be
a real r-lightlike submanifold of K2. Then the distribution D′ is integrable if
and only if

(15) ∇ZfV −∇V fZ −AωV Z +AωZV ∈ Γ(D′),

for each Z, V ∈ Γ(D′).
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Definition 3.4. [5] A lightlike submanifold (K1, g) of a semi-Riemannian
manifold (K2, g2) is totally umbilical in K2 if there is a smooth transversal
vector field H ∈ Γ(ltr(TK1)) on K1, called the transversal curvature vector
field of K1, such that, for each Y1, Y2 ∈ Γ(TK1),

(16) h(Y1, Y2) = Hg1(Y1, Y2).

It is clear from the Gauss and Weingarten formulae (4) of K2 that K1 is
totally umbilical if and only if there are smooth vector fields H l ∈ Γ(ltr(TK1))
and Hs ∈ Γ(S(TK⊥

1 )) in each coordinate neighbourhood U, such that

hl(Y1, Y2) = H lg1(Y1, Y2), D
l(Y1,W ) = 0, hs(Y1, Y2) = Hsg1(Y1, Y2),

for each Y1, Y2 ∈ Γ(TK1) and W ∈ Γ(S(TK⊥
1 )).

Theorem 3.5. Suppose that K2 is an indefinite Kaehler manifold and K1

is a totally umbilical screen generic lightlike submanifold of K2. Then H l = 0.

Proof. For Y1, Y2 ∈ Γ(D0), using Eq. (11) along with the hypothesis and
then considering the lightlike transversal components, we get

H lg1(Y1, JY2) = CH lg1(Y1, Y2).

Taking Y1 = JY2 and in view of the non-degeneracy of D0, above equation
yields that H l = 0.

4. Screen Generic Lightlike Submersion

Definition 4.1. Assume that K2 is an indefinite Kaehler manifold and
(K1, g1, D) is a screen generic lightlike submanifold of K2 such that D′ is inte-

grable and (K
′
, g2) is an indefinite almost Hermitian manifold. Then a smooth

mapping ϕ : (K1, g1, D) → (K
′
, g2) is called a lightlike submersion if

(a) at each p ∈ K1,Vp = ker(ϕ∗)p = D′,
(b) at every p ∈ K1, the differential operator ϕ∗ restricts to an isometry of

the horizontal space Hp = Dp onto Tϕ(p)K
′
, that is

g1(Y1, Y2) = g2(ϕ∗(Y1), ϕ∗(Y2))

for any given vector fields Y1, Y2 ∈ Γ(D).

The restriction of ϕ∗p to Hp = S(TK1)p maps the space isomorphically onto

Tϕ(p)K
′
, as the definition implies. Then for any vector Ỹ1 ∈ Tϕ(p)K

′
, we note

that the vector Y1 ∈ S(TK1)p is a horizontal lift of Ỹ1. On the other hand, if

Ỹ1 is a vector field on an open set U of K
′
then the horizontal lift Ỹ1 is the

vector field Y1 ∈ Γ(S(TK1)) on ϕ−1(U) such that ϕ∗(Y1) = Ỹ1oϕ and is called
the basic vector field.
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Lemma 4.2. Consider a screen generic lightlike submersion ϕ : K1 → K
′

defined from a screen generic lightlike submanifold of an indefinite Kaehler
manifold K2 onto an indefinite almost hermitian manifold K

′
. If Y1 and Y2 are

basic vector field ϕ-related to Ỹ1, Ỹ2, respectively, then

(i) g1(Y1, Y2) = g2(Ỹ1, Ỹ2)oϕ.

(ii) [Y1, Y2]
H is the basic vector field and ϕ-related to [Ỹ1, Ỹ2].

(iii) (∇K1

Y1
Y2)

H is a basic vector field and ϕ-related to (∇̃K′

Ỹ1
Ỹ2).

(iv) For any vertical vector field V, [Y1, V ] is vertical.

Proof. If Y1 and Y2 are the basic vector fields of K1, then (i) obviously
follows from part (b) of the definition (4.1). Given that P and Q are projections
from TK1 on the distribution of a screen generic lightlike submanifold of an
indefinite Kaehler manifold, D and D′, respectively, then [Y1, Y2] = P [Y1, Y2]+
Q[Y1, Y2]. Since, the horizontal component of [Y1, Y2] which is P [Y1, Y2] is a

basic vector field and correspond to [Ỹ1, Ỹ2], that is

ϕ∗(P [Y1, Y2]) = [ϕ∗(Y1), ϕ∗(Y2)],

Then from Koszul’s formula, we have

2g1(∇Y1
Y2, Z) = Y1(g1(Y2, Z)) + Y2(g1(Z, Y1))− Z(g1(Y1, Y2))

−g1(Y1, [Y2, Z]) + g1(Y2, [Z, Y1]) + g1(Z, [Y1, Y2]).(17)

for any Y1, Y2, Z ∈ Γ(D).

Let Y1, Y2, and Z be the horizontal lifts of the vector fields Ỹ1, Ỹ2, and Z̃,
respectively. Then Y1(g1(Y2, Z) = Ỹ1(g2(Ỹ2, Z̃)oϕ and

g1(Z, [Y1, Y2]) = g2(Z̃, [Ỹ1, Ỹ2])oϕ.

Thus from Eq. (17) we obtain

2g1(∇K1

Y1
Y2, Z) = Ỹ1(g2(Ỹ2, Z̃)oϕ+ Ỹ2(g2(Z̃, Ỹ1)oϕ− Z̃(g2(Ỹ1, Ỹ2)

oϕ− g2(Ỹ1, [Ỹ2, Z̃])oϕ+ g2(Ỹ2, [Z̃, Ỹ1])oϕ

+g2(Z̃, [Ỹ1, Ỹ2])oϕ

= 2g2(∇K
′

Ỹ1
Ỹ2, Z̃).(18)

Given that Z̃ is an arbitrary vector field and ϕ is surjective, therefore condition
(iii) follows from Eq.(18). Next, let V ∈ Γ(D′) then [Y1, V ] is ϕ related to [Ỹ1, 0],
which proves (iv) and this concludes the proof.

Let ∇K
′

be the covariant differentiation on K
′
. Then we define correspond-

ing operator ∇̃K
′

by assuming

∇̃K
′

Y1
Y2 = (∇̃K1

Y1
Y2)

H

for any basic vector field Y1 and Y2. Thus from (iii) of Lemma (4.2), ∇̃K
′

Y1
Y2 is

a basic vector field and ϕ∗(∇K
′

Y1
Y2) = ϕ∗(∇̃K

′

Y1
Y2) = ∇̃K

′

Ỹ1
Ỹ2. Thus we have a
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tensor field C, using Eq. (12) as

(19) ∇K1

Y1
Y2 = ∇̃K

′

Y1
Y2 + C(Y1, Y2)

for any Y1, Y2 ∈ Γ(D), where C(Y1, Y2) denote the vertical part of ∇K1

Y1
Y2. It

is easy to check that C is a billinear map from D ×D → D′.

Lemma 4.3. The tensor field C is skew-symmetric and satisfies

C(Y1, Y2) =
1

2
V[Y1, Y2].

Proof. Let Z ∈ Γ(D′) be any vertical vector field. Then, for any Y1 ∈ Γ(D)
consider (∇̄Zg2)(Y1, Y1) = 0, which further implies

0 = Zg1(Y1, Y1) = 2g2(∇̄ZX,Y1)

= 2g1(∇K1

Z Y1, Y1) = 2g1(∇K1

Y1
Z − [Y1, Z], Y1)

= 2g1(∇K1

Y1
Z, Y1) = −2g1(Z,∇K1

Y1
Y1) = −2g1(Z, ∇̃K

′

Y1
Y1 + C(Y1, Y1))

= −2g1(Z,C(Y1, Y1)),

Since D′ is non-degenerate distribution, g1(Z,C(Y1, Y1)) = 0 if and only if
C(Y1, Y1) = 0, that is, if and only if, C is skew-symmetric. Also for Y1, Y2 ∈
Γ(D), we have

[Y1, Y2] = ∇K1

Y1
Y2 −∇K1

Y2
Y1 = (∇̃K′

Y1
Y2 − ∇̃K′

Y Y1) + C(Y1, Y2)

−C(Y2, Y1)

= (∇̃K′

Y1
Y2 − ∇̃K′

Y Y1) + 2C(Y1, Y2).

On comparing the vertical components on both sides, we get

(20) C(Y1, Y2) =
1

2
V[Y1, Y2].

Next we define a new tensor field T as

(21) ∇K1

Y1
Z = TY1Z + (∇K1

Y1
Z)V ,

for any Y1 ∈ Γ(D) and Z ∈ Γ(D′). Clearly, T is a bilinear map defined from

D ×D′ → D. Since [Y1, Z] = ∇K1

Y1
Z −∇K1

Z Y1 is vertical, therefore we have

(22) H(∇K1

Y1
Z) = H(∇K1

Z Y1) = TY1
Z.

Lemma 4.4. For each Y1, Y2 ∈ Γ(D) and Z ∈ Γ(D′), we have

(23) g1(TY1Z, Y2) = −g1(Z,C(Y1, Y2)).
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Proof. For each Y1, Y2 ∈ Γ(D), Z ∈ Γ(D′) and using Eqs.(21) and (22), we
have

g1(TY1Z, Y2) = g1(∇K1

Y1
Z, Y2) = g1(∇̄Y1

Z, Y2) = −g1(Z, ∇̄Y1
Y2)

= −g1(Z,∇Y1Y2) = −g1(Z, ∇̃K
′

Y1
Y2 + C(Y1, Y2))

= −g1(Z,C(Y1, Y2)).

Thus, the result follows.

Theorem 4.5. Suppose that K2 is an indefinite Kaehler manifold and
K1 is a screen generic lightlike submanifold of K2. If a screen generic lightlike
submersion ϕ : K1 → K

′
is defined fromK1 onto an indefinite almost Hermitian

manifold K
′
such that D′ is integrable, then K

′
is necessarily an indefinite

Kaehler manifold.

Proof. Let Y1, Y2 ∈ Γ(D) be basic vector fields. Then from Eqs. (4) and
(19), we have

(24) ∇̄Y1
Y2 = ∇̃K

′

Y1
Y2 + C(Y1, Y2) + hl(Y1, Y2) + hs(Y1, Y2).

Applying J̄ in Eq. (24), we get

J̄∇̄Y1
Y2 = J̄∇̃K

′

Y1
Y2 + J̄C(Y1, Y2) + J̄hl(Y1, Y2) + J̄hs(Y1, Y2),

= J̄∇̃K
′

Y1
Y2 + fC(Y1, Y2) + ωC(Y1, Y2) + J̄hl(Y1, Y2)

+fhs(Y1, Y2).(25)

On replacing Y2 by J̄Y2 in Eq. (24), we get

(26) ∇̄Y1
J̄Y2 = ∇̃K

′

Y1
J̄Y2 + C(Y1, J̄Y2) + hl(Y1, J̄Y2) + hs(Y1, J̄Y2).

Since K2 is an indefinite Kaehler manifold, therefore we have

∇̄Y1 J̄Y2 = J̄∇̄Y1Y2.

Then from Eqs. (25) and (26), we acquire

∇̃K
′

Y1
J̄Y2 + C(Y1, J̄Y2) + hl(Y1, J̄Y2) + hs(Y1, J̄Y2)

= J̄∇̃K
′

Y1
Y2 + fC(Y1, Y2) + ωC(Y1, Y2) + J̄hl(Y1, Y2) + fhs(Y1, Y2).

On comparing the components of horizontal, vertical and normal vector fields,
we get

(27) ∇̃K
′

Y1
J̄Y2 = J̄∇̃K

′

Y1
Y2,

(28) C(Y1, J̄Y2) = fC(Y1, Y2) + fhs(Y1, Y2),

(29) hl(Y1, J̄Y2) = J̄hl(Y1, Y2),

(30) hs(Y1, J̄Y2) = ωC(Y1, Y2).
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From Eq. (27), we have ∇̃K
′

Y1
J̄Y2 = J̄∇̃K

′

Y1
Y2 that is (∇̃K

′

Y1
J̄)Y2 = 0, which

proves that K
′
is also an indefinite Kaehler manifold.

Corollary 4.6. If ϕ : K1 → K
′
is a submersion of screen generic light-

like submanifold of an indefinite Kaehler manifold onto an indefinite almost
Hermitian manifold such that D′ is integrable, then

C(Y1, J̄Y2) + h(Y1, J̄Y2) = J̄C(Y1, Y2) + J̄h(Y1, Y2).

Proposition 4.7. Suppose that K2 is an indefinite Kaehler manifold and
K1 is a totally umbilical screen generic lightlike submanifold of K2. If K

′
is

an indefinite Kaehler manifold such that ϕ : K1 → K
′
is a lightlike submersion

from K1 onto K
′
, then

TJ̄Y1
V = J̄TY1

V,

for each Y1 ∈ Γ(D), V ∈ Γ(D′).

Proof. Let Y1 be a basic vector field, Y2 ∈ Γ(D), V ∈ Γ(D′). Then we have

g1(TJ̄Y1
V, Y2) = g1(H(∇J̄Y1

V ), Y2) = g1(∇J̄Y1
V, Y2)

= g1([J̄Y1, V ] +∇V J̄Y1, Y2)

= g1(∇V J̄Y1, Y2) = g1(∇̄V J̄Y1, Y2)

= g1(J̄∇̄V Y1, Y2) = −g1(∇̄V Y1, J̄Y2)

= −g1(∇V Y1, J̄Y2) = −g1(TV Y1, J̄Y2)

= g1(J̄TV Y1, Y2).

Then using non-degeneracy of D0 in S(TK1), we have TJ̄Y1
V = J̄TY1

V .

Proposition 4.8. Assume that K2 is an indefinite Kaehler manifold and
K1 is a totally umbilical screen generic lightlike submanifold of K2. If K

′
is

an indefinite Kaehler manifold such that ϕ : K1 → K
′
is a lightlike submersion

from K1 onto K
′
, then we have C(J̄Y1, J̄Y2) = C(Y1, Y2).

Proof. For Y1, Y2 ∈ Γ(D), V ∈ Γ(D′) and using Lemma (4.4) and Eq. (22),
we have

g1(V,C((J̄Y1, J̄Y2)) = −g1(TJ̄Y1
V, J̄Y2) = −g1(J̄TV Y1, J̄Y2)

= −g1(TV Y1, Y2) = −g1(TY1
V, Y2)

= g1(V,C(Y1, Y2)).

Then using the non-degeneracy of D′, we have C(J̄Y1, J̄Y2) = C(Y1, Y2).

Corollary 4.9. For horizontal vector field Y1 and Y2, we have

C(Y1, J̄Y2) = −C(J̄Y1, Y2).

Now for U, V ∈ Γ(D′), we define L by

(31) ∇UV = L(U.V ) + ∇̂UV.



640 Gaurav Sharma, Sangeet Kumar, and Dinesh Kumar Sharma

where L(U, V ) = H(∇UV ), ∇̂UV = V(∇UV ). For V ∈ Γ(D′), Y1 ∈ Γ(D),
define A as

(32) ∇V Y1 = H(∇UY1) +AV Y1.

Now for basic vector field Y1 and V ∈ Γ(D′),

H(∇V Y1) = H(∇Y1V ) = TY1V.

Thus from Eq. (32), we have

(33) ∇V Y1 = TY1V +AV Y1.

The operators L and A are related by

(34) g1(AV Y1,W ) = −g1(L(V,W ), Y1).

Theorem 4.10. Suppose that K2 is an indefinite Kaehler manifold and K1

is a totally umbilical screen generic lightlike submanifold of K2. Let K
′
be an

indefinite Kaehler manifold and ϕ : K1 → K
′
be a lightlike submersion from K1

onto K
′
such that D′ is integrable. If H̄ and HK

′

represent the holomorphic
sectional curvature of K2 and K

′
respectively, then for any unit basic vector

Y1 ∈ Γ(H) of K1, we have

H̄ = HK
′

+ 4||Hs||2.
Proof. For Y1, Y2, X ∈ Γ(D), using Eqs. (19) and (21), we have

∇Y1∇Y2X = ∇̃K
′

Y1
∇̃K

′

Y2
X + TY1C(Y2, X) + (∇Y1∇Y2X)V ,(35)

Replacing Y1 with Y2 in Eq. (35), we have

(36) ∇Y2
∇Y1

X = ∇̃K
′

Y ∇̃K
′

Y1
X + TY C(Y1, X) + (∇Y2

∇Y1
X)V ,

Also

(37) ∇[Y1,Y2]X = ∇̃K
′

H[Y1,Y2]
X + 2TZ(Y1, Y2) + (∇[Y1,Y2]X)V ,

Further using Eqs. (35)-(37), we have

RK1(Y1, Y2)X = (RK
′

(Ỹ1, Ỹ2)X̃))∗ + TXC(Y2, X)− TY C(Y1, X)

−2TZ(Y1, Y2) + (RK1(Y1, Y2)X)V ,(38)

where (RK
′

(Ỹ1, Ỹ2)X̃))∗ denotes the basic vector field of K1 corresponding to

RK
′

(Ỹ1, Ỹ2)X̃), therefore using Eq. (38) in Eq. (8), we get

R̄(Y1, Y2)X = (RK
′

(Ỹ1, Ỹ2)X̃))∗ + TXC(Y2, X)− TY C(Y1, X)

−2TZC(Y1, Y2) +Ahl(Y1,X)Y2 −Ahl(Y2,X)Y1 +

Ahs(Y1,X)Y2 −Ahs(Y2,X)Y1 + (∇Y1
hl)(Y2, X)−

(∇Y2h
l)(Y1, X) +Dl(Y1, h

s(Y2, X))−Dl(Y2, h
s(Y1, X))

+(∇Y1
hs)(Y2, X)− (∇Y2

hs)(Y1, X) +Ds(Y1, h
l(Y2, X))

+Ds(Y2, h
l(Y1, X)) + (R̄(Y1, Y2)X)V .(39)
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Now for basic vector field W ∈ Γ(D), we have

R̄(Y1, Y2, X,W ) = g1(R̄(Y1, Y2)X,W ),

therefore using Eq. (39), we get

R̄(Y1, Y2, X,W ) = g1((R
K

′

(Ỹ1, Ỹ2)X̃))∗,W ) + g1(TXC(Y2, X),W )

−g1(TY C(Y1, X),W )− 2g1(TZC(Y1, Y2),W )

+g1(Ahl(Y1,X)Y2,W )− g1(Ahl(Y2,X)Y1,W )

+g1(Ahs(Y1,X)Y2,W )− g1(Ahs(Y2,X)Y1,W ),(40)

Now using Lemma (4.4), we have

(41) g1(TXC(Y2, X),W ) = −g1(C(Y2, X), C(Y1,W )),

(42) g1(TY C(Y1, X),W ) = −g1(C(Y1, X), C(Y2,W )),

and

(43) g1(TZC(Y1, Y2),W ) = −g1(C(Y1, Y2), C(X,W )).

Since K1 is totally umbilical, thus using Eq. (5), we have
(44)

g1(Ahl(Y1,X)Y2,W ) = −g1(∇̄Y h
l(Y1, X),W ) = g1(h

l(Y1, X), ∇̄Y W ) = 0.

Similarly, we have

(45) g1(Ahl(Y2,X)Y1,W ) = 0.

Also we have

(46) g1(Ahs(Y1,X)Y2,W ) = g2(h
s(Y2,W ), hs(Y1, X))

and

(47) g1(Ahs(Y2,X)Y1,W ) = g2(h
s(Y1,W ), hs(Y2, X)).

Now using Eqs. (41) - (47) in Eq. (40), we get

R̄(Y1, Y2, X,W ) = R̄K
′

(Ỹ1, Ỹ2, X̃, W̃ )− g1(C(Y2, X), C(Y1,W ))

+g1(C(Y1, X), C(Y2,W ))

+2g1(C(Y1, Y2), C(X,W ))

+g2(h
s(Y2,W ), hs(Y1, X))

−g2(h
s(Y1,W ), hs(Y2, X).(48)

Now putting Y2 = J̄Y1, X = Y1,W = J̄Y1 in Eq. (48) and using skew symmet-
ric property of C along with Eqs. (28) and (30), we get

R̄(Y1, J̄Y1, Y1, J̄Y1) = R̄K
′

(Ỹ1, J̄ Ỹ1, Ỹ1, J̄ Ỹ1)− g1(C(J̄Y1, Y1),

C(Y1, J̄Y1)) + 2g1(C(Y1, J̄Y1), C(Y1, J̄Y1))

+g2(h
s(J̄Y1, J̄Y1), h

s(Y1, Y1)),(49)
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Since

C(J̄Y1, Y1) = −C(Y1, J̄Y1), g1(C(Y1, J̄Y1), C(Y1, J̄Y1))

= g1(J̄h
s(Y1, Y1), J̄h

s(Y1, Y1))

= g1(h
s(Y1, Y1), h

s(Y1, Y1)),

using this together with hypothesis and Proposition (4.8), we have

R̄(Y1, J̄Y1, Y1, J̄Y1) = R̄K
′

(Ỹ1, J̄ Ỹ1, Ỹ1, J̄ Ỹ1) + 4||Hs||2,
that is

H̄ = HK
′

+ 4||Hs||2.

Theorem 4.11. Suppose that K2 is an indefinite Kaehler manifold and K1

is a totally umbilical screen generic lightlike submanifold of K2. If K
′
is an

indefinite Kaehler manifold such that ϕ : K1 → K
′
is a lightlike submersion

from K1 onto K
′
such that D′ is integrable, then the sectional curvature of K2

and of the fibre are related by

K̄(Z ∧W ) = K̂(Z ∧W )− g1(L(Z,W ), L(W,Z))

+g1(L(W,W ), L(Z,Z)),

where Z,W ∈ Γ(D′).

Proof. For Z,W, V ∈ Γ(D′), using Eqs. (31) and (32) we have

R(Z,W )V = ∇Z∇WV −∇W∇ZV −∇[Z,W ]V

= AZL(W,V ) + ∇̂Z∇̂WV

−AWL(Z, V )− ∇̂W ∇̂ZV − ∇̂[Z,W ]V

+horizontal part

= R̂(Z,W )V +AZL(W,V )−AWL(Z, V )

+horizontal part.(50)

Let Z,W, V, S ∈ Γ(D′) and using Eqs. (31)-(34) in Eq. (50), one has

R(Z,W, V, S) = g1(R(Z,W )V, S) = g1(R̂(Z,W )V +AZL(W,V )

−AZL(W,V ), S)

= g1(R̂(Z,W )V, S) + g1(AZL(W,V ), S)

−g1(AWL(Z, V ), S)

= R̂(Z,W, V, S)− g1(L(Z, S), L(W,V ))

+g1(L(W,S), L(Z, V ).

Taking V = Z and S = W in above equation, we acquire

R(Z,W,Z,W ) = R̂(Z,W,Z,W )− g1(L(Z,W ), L(W,Z))

+g1(L(W,W ), L(Z,Z).(51)
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From Eq. (8), setting Y1 = Z, Y2 = W, we obtain

R̄(Z,W )Z = R(Z,W )Z +Ahl(Z,Z)W −Ahl(W,Z)Z +Ahs(Z,Z)W

−Ahs(W,Z)Z + (∇Zh
l)(W,Z)− (∇Whl)(Z,Z)

+Dl(Z, hs(W,Z))−Dl(W,hs(Z,Z)) + (∇Zh
s)(W,Z)

−(∇Whs)(Z,Z) +Ds(Z, hl(W,Z)) +Ds(W,hl(Z,Z)),

Then considering the inner product of the above equation with W ∈ Γ(D′), we
have

R̄(Z,W,Z,W ) = g1(R̄(Z,W )Z,W ) = g1(R(Z,W )Z,W )

+g1(Ahl(Z,Z)W,W )− g1(Ahl(W,Z)Z,W )

+g1(Ahs(Z,Z)W,W )− g1(Ahs(W,Z)Z,W )

+g1((∇Zh
l)(W,Z),W )− g1((∇Whl)(Z,Z),W )

+g1(D
l(Z, hs(W,Z)),W )− g1(D

l(W,hs(Z,Z)),W )

+g1((∇Zh
s)(W,Z),W )− g1(D

l(W,hs(Z,Z)),W )

+g1((∇Zh
s)(W,Z),W )− g1((∇Whs)(Z,Z),W )

+g1(D
s(Z, hl(W,Z)),W ) + g1(D

s(W,hl(Z,Z)),W ),

which further becomes

R̄(Z,W,Z,W ) = R(Z,W,Z,W ) + g1(Ahl(Z,Z)W,W )

−g1(Ahl(W,Z)Z,W ) + g1(Ahs(Z,Z)W,W )

−g1(Ahs(W,Z)Z,W ).(52)

Using Eqs. (7) and (51) in Eq. (52), we get

R̄(Z,W,Z,W ) = R̂(Z,W,Z,W )− g1(L(Z,W ), L(W,Z))

+g1(L(W,W ), L(Z,Z) + g1(Ahl(Z,Z)W,W )

−g1(Ahl(W,Z)Z,W ) + g1(h
s(W,W ), hs(Z,Z))

−g1(h
s(Z,W ), hs(Z,W )).(53)

As K1 is a totally umbilical lightlike manifold, therefore from theorem (3.5)
and hs(Z,W ) = Hsg1(Z,W ), thus Eq. (53) reduces to

R̄(Z,W,Z,W ) = R̂(Z,W,Z,W )− g1(L(Z,W ), L(W,Z))

+g1(L(W,W ), L(Z,Z)).

Thus the proof follows.

Theorem 4.12. Let K2 be an indefinite Kaehler manifold and K1 be a to-
tally umbilical screen generic lightlike submanifold of K2. If K

′
is an indefinite

Kaehler manifold such that ϕ : K1 → K
′
is a lightlike submersion from K1
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onto K
′
, then for Y1, Y2 ∈ Γ(D) and V1, V2 ∈ Γ(D′)

R̄(Y1, V1, Y2, V2) = g1(TY1V2, P (∇V1Y2))− g1(AV1Y2, Q∇Y1V2)

−g1(L(V1, V2), ∇̃K
′

Y1
Y2) + g1(L([Y1, Y2], V2), Y2)

+g1(∇̂V1
C(Y1, Y2), V2) + g2(h

s(V1,W ), hs(Y1, Y2)).

Proof. For Y1, Y2 ∈ Γ(D) and V1, V2 ∈ Γ(D′), we have

(54) ∇Y1
∇V1

Y2 = C(Y1,H(∇V1
Y2) +∇Y1

(AV1
Y2) + horizontal part.

Similarly,

(55) ∇V1∇Y1Y2 = AV1∇̃K
′

Y1
Y2 + ∇̂V1C(Y1, Y2) + horizontal part,

and

(56) ∇[Y1,V1]Y2 = A[Y1,V1]Y2 + horizontal part.

We know that

R(Y1, V1)Y2 = ∇Y1∇V1Y2 +∇V1∇Y1Y2 −∇[Y1,V1]Y2,

further using Eqs. (54) - (56) in above equation, we acquire

R(Y1, V1)Y2 = C(Y1,H(∇V1
Y2) +∇Y1

(AV1
Y2) +AV1

∇̃K
′

Y1
Y2

+∇̂V1
C(Y1, Y2)−A[Y1,V1]Y2 + horizontal part.

Now taking the inner product of the above equation with V2 ∈ Γ(D′) and using
Eqs.(23) and (34), we obtain

R(Y1, V1, Y2, V2) = g1(R(Y1, V1)Y2, V2)

= g1(C(Y1,H(∇V1
Y2)), V2) + g1(∇Y1

(AV1
Y2), V2)

+g1(AV1∇̃K
′

Y1
Y2, V2) + g1(∇̂V1C(Y1, Y2), V2)

−g1(A[Y1,V1]Y2, V2)

= g1(TY1
V2,H(∇V1

Y2)) + g1(∇Y1
AV1

Y2, V2)

−g1(L(V1, V2), ∇̃Y1Y2) + g1(L([Y1, V1], V2), Y2)

+g1(∇̂V1
C(Y1, Y2), V2).(57)

In Eq. (8), setting Y2 = V1 and X = Y2, one has

R̄(Y1, V1)Y2 = R(Y1, V1)Y2 +Ahl(Y1,Y2)V1 −Ahl(V1,Y2)Y1

+Ahs(Y1,Y2)V1 −Ahs(V1,Y2)Y1

+(∇Y1h
l)(V1, Y2)− (∇V1h

l)(Y1, Y2)

+Dl(Y1, h
s(V1, Y2))−Dl(V1, h

s(Y1, Y2))

+(∇Y1h
s)(V1, Y2)− (∇V1h

s)(Y1, Y2)

+Ds(Y1, h
l(V1, Y2))−Ds(V1, h

l(Y1, Y2)).(58)



Screen generic lightlike submersions 645

Now using Eq. (58), we have

R̄(Y1, V1, Y2, V2) = g1(R̄(Y1, V1)Y2, V2)

= R(Y1, V1, Y2, V2) + g1(Ahl(Y1,Y2)V1, V2)

−g1(Ahl(V1,Y2)Y1, V2) + g1(Ahs(Y1,Y2)V1, V2)

−g1(Ahs(V1,Y2)Y1, V2).(59)

Using Eq. (57) in Eq. (59), we derive

R̄(Y1, V1, Y2, V2) = g1(TY1V2,H(∇V1Y2)) + g1(∇Y1AV1Y2, V2)

−g1(L(V1, V2), ∇̃K
′

Y1
Y2) + g1(L([Y1, Y2], V2), Y2)

+g1(∇̂V1
C(Y1, Y2), V2) + g1(Ahl(Y1,Y2)V1, V2)

−g1(Ahl(V1,Y2)Y1, V2) + g1(Ahs(Y1,Y2)V1, V2)

−g1(Ahs(V1,Y2)Y1, V2).

Further using Eq. (7), we acquire

R̄(Y1, V1, Y2, V2) = g1(TY1V2, P (∇V1Y2)) + g1(∇Y1AV1Y2, V2)

−g1(L(V1, V2), ∇̃K
′

Y1
Y2) + g1(L([Y1, Y2], V2), Y2)

+g1(∇̂V1
C(Y1, Y2), V2) + g1(Ahl(Y1,Y2)V1, V2)

−g1(Ahl(V1,Y2)Y1, V2) + g2(h
s(V1, V2), h

s(Y1, Y2))

−g2(h
s(Y1, V2), h

s(V1, Y2)),(60)

Now for Y1, Y2 ∈ Γ(D) and V1, V2 ∈ Γ(D′), we have

g1(∇Y1AV1Y2, V2) = g2(∇̄Y1AV1Y2, V2) = −g1(AV1Y2, ∇̄Y1V2)

= −g1(AV1Y2,∇Y1V2)

= −g1(AV1Y2, Q∇Y1V2).

Using above result and totally umbilical property of K1, Eq. (60) becomes

R̄(Y1, V1, Y2, V2) = g1(TY1V2, P (∇V1Y2))− g1(AV1Y2, Q∇Y1V2)

−g1(L(V1, V2), ∇̃K
′

Y1
Y2) + g1(L([Y1, Y2], V2), Y2)

+g1(∇̂V1
C(Y1, Y2), V2) + g2(h

s(V1, V2), h
s(Y1, Y2)).(61)

Theorem 4.13. Assume that K2 is an indefinite Kaehler manifold and K1

is a totally umbilical screen generic lightlike submanifold of K2. If K
′
is an

indefinite Kaehler manifold such that ϕ : K1 → K
′
be a lightlike submersion

from K1 onto K
′
, then

K̄(Y1, V1) = ||TY1V1||2 − g1(L(V1, V1), ∇̃K
′

Y1
Y1) + g1(L([Y1, Y1], V1), Y1)

+g2(h
s(V1, V1), h

s(Y1, Y1)),

where Y1 ∈ Γ(D) and V1 ∈ Γ(D′).



646 Gaurav Sharma, Sangeet Kumar, and Dinesh Kumar Sharma

Proof. For Y1 ∈ Γ(D) and V1 ∈ Γ(D′), put Y2 = Y1, V2 = V1 in Eq. (61),
we get

R̄(Y1, V1, Y1, V1) = g1(TY1V1, P (∇V1Y1))− g1(AV1Y1, Q∇Y1V1)

−g1(L(V1, V1), ∇̃K
′

Y1
Y1) + g1(L([Y1, Y1], V1), Y1)

+g1(∇̂V1
C(Y1, Y1), V1) + g2(h

s(V1, V1), h
s(Y1, Y1)).

Using Eq. (33) and skew-symmetric property of tensor C, the result follows.
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[17] B. Sahin and Yilmaz Gündüzalp, Submersion from semi-Riemannian manifolds onto

lightlike manifolds, Hacet. J. Math. Stat 39 (2010), 41–53.
[18] G. Sharma, S. Kumar, and M. Kumar, On lightlike submersion of radical transversal

lightlike submanifolds of a Kaehler manifold, ECS Trans. 107 (2022), no. 1, 10069–

10084.



Screen generic lightlike submersions 647

Gaurav Sharma
Department of Mathematics,
Maharaja Agrasen University,
Baddi-174103, Himachal Pradesh, India.

SDWG Government College Beetan,
Una-176601, Himachal pradesh, India.
E-mail: g.gauravsh@gmail.com

Sangeet Kumar
Department of Mathematics,
Sri Guru Teg Bahadur Khalsa College,
Sri Anandpur Sahib-140118, Punjab, India.
E-mail: sp7maths@gmail.com

Dinesh Kumar Sharma
Department of Mathematics,
Maharaja Agrasen University,
Baddi-174103, Himachal Pradesh, India.
E-mail: dksharma200513@gmail.com


