DOI QR코드

DOI QR Code

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai (Institute of Structural Engineering, College of Civil Engineering and Architecture, Zhejiang University, Center for Balance Architecture, Zhejiang University) ;
  • Mingfeng Huang (Institute of Structural Engineering, College of Civil Engineering and Architecture, Zhejiang University, Center for Balance Architecture, Zhejiang University) ;
  • Xiao Li (Department of Civil, Chemical and Environmental Engineering, Polytechnic School, University of Genova) ;
  • Haiwei Xu (Institute of Structural Engineering, College of Civil Engineering and Architecture, Zhejiang University) ;
  • Binbin Li (College of Civil Engineering and Architecture, Zhejiang University, ZJU-UIUC Institute, Zhejiang University) ;
  • Chen Yang (Institute of Structural Engineering, College of Civil Engineering and Architecture, Zhejiang University, Center for Balance Architecture, Zhejiang University)
  • Received : 2023.03.22
  • Accepted : 2023.08.03
  • Published : 2023.12.25

Abstract

Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

Keywords

Acknowledgement

The work described in this paper was partially supported by the National Natural Science Foundation of China (Project No. 52178512), and the Natural Science Foundation of Zhejiang Province (Project No. LZ22E080006).

References

  1. Au, S.K., Zhang, F.L and To, P. (2012), "Field observations on modal properties of two tall buildings under strong wind", J. Wind Eng. Ind. Aerod., 101, 12-23. https://doi.org/10.1016/j.jweia.2011.12.002.
  2. Bouchikhi, A. and Boudraa, A.O. (2012), "Multicomponent AM-FM signals analysis based on EMD-B-splines ESA", Signal Processing, 92(9), 2214-2228. https://doi.org/10.1016/j.sigpro.2012.02.014.
  3. Bouchikhi, A., Boudraa, A.O., Benramdane, S. and Diop, E.H. (2008). "Empirical mode decomposition and some operators to estimate instantaneous frequency: A comparative study", 3rd International Symposium on Communications, Control and Signal Processing, Saint Julian's, Malta, March. https://doi.org/10.1109/ISCCSP.2008.4537297.
  4. Dragomiretskiy, K. and Zosso, D. (2013). "Variational mode decomposition", IEEE Transact. Signal Processing, 62(3), 531-544. http://dx.doi.org/10.1109/TSP.2013.2288675.
  5. Erdem, E. and Jing, S. (2011), "ARMA based approaches for forecasting the tuple of wind speed and direction", Appl. Energy, 88(4), 1405-1414. https://doi.org/10.1016/j.apenergy.2010.10.031.
  6. Feldman, M. (2009). "Hilbert Transform, Envelope, Instantaneous Phase, and Frequency", Encyclopedia Struct. Health Monit., https://doi.org/10.1002/9780470061626.shm046.
  7. Guo, Y.L., Kareem, A., Ni, Y.Q. and Liao, W.Y. (2012), "Performance evaluation of canton tower under winds based on full-scale data", J. Wind Eng. Ind. Aerod., 104-106, 116-128. https://doi.org/10.1016/j.jweia.2012.04.001.
  8. Han, J.P., Zheng, P.J. and Wang, H. (2014), "Structural modal parameter identification and damage diagnosis based on Hilbert-Huang transform", Earthq. Eng. Eng. Vib., 13(1), 101-111. http://dx.doi.org/10.1007/s11803-014-0215-3.
  9. Hestenes, M.R. (1969), "Multiplier and gradient methods", J. Optimiz. Theory Appl., 4(5), 303-320. https://doi.org/10.1007/BF00927673.
  10. Hu, F., Zhi, L.H., Hu, Z.X. and Chen, B. (2023), "Modal parameter identification of civil structures using symplectic geometry mode decomposition", Wind Struct., 36(1), 61-73. https://doi.org/10.12989/was.2023.36.1.061.
  11. Hu, W.H., Tang, D.H., Li, J.Y., Xu, Z.M., Wang, Y.C., Lu, W., Li, Z.H., Teng, J. (2022), "Structural dynamic parameter identification of Saige building based on distributed synchronous acquisition method", J. Buil. Struct., 43(10), 9. (In Chinese). https://doi.org/10.14006/j.jzjgxb.2022.0050.
  12. Huang, F.L., Wang, X.M., Chen, Z.Q., He, X.H and Ni, Y.Q. (2007). "A new approach to identification of structural damping ratios", J. Sound Vib., 303(1-2), 144-153. https://doi.org/10.1016/j.jsv.2006.12.026.
  13. Huang, M.F., Li, Q., Chan, C.M., Lou, W.J., Kwok, K.C.S. and Li G. (2015), "Performance-based design optimization of tall concrete framed structures subject to wind excitations", J. Wind Eng. Ind. Aerod., 139, 70-81. https://doi.org/10.1016/j.jweia.2015.01.005.
  14. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 903-995. https://doi.org/10.1098/rspa.1998.0193.
  15. James, G.H., Carne, T.G. and Laufer, J.P. (1993). "The Natural Excitation Technique (NExT) for modal parameter extraction from operating wind turbines", Technical Report SAND92-1666, Sandia National Laboratories. https://www.osti.gov/biblio/10139203.
  16. Kaiser, J.F. (1990). "On a simple algorithm to calculate the 'energy' of a signal", In Proc. International Conference on Acoustics, Speech, and Signal Processing, 381-384. https://doi.org/10.1109/ICASSP.1990.115702.
  17. Kaiser, J.F. (1993), "Some useful properties of Teager's energy operators", In Proc. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, 149-152. https://doi.org/10.1109/ICASSP.1993.319457.
  18. Kareem, A., Kijewski, T. and Tamura, Y. (1999), "Mitigation of motions of tall buildings with specific examples of recent applications", Wind Struct., 2(3), 201-251. https://doi.org/10.12989/was.1999.2.3.201.
  19. Ku, C.J., Tamura, Y., Yoshida, A., Miyake, K. and Chou, L.S. (2013), "Output-only modal parameter identification for force-embedded acceleration data in the presence of harmonic and white noise excitations", Wind Struct., 16(2), 157-178. https://doi.org/10.12989/WAS.2013.16.2.157.
  20. Kulkarni, R. and Rastogi, P. (2014), "Estimation of phase derivatives using discrete energy separation algorithm in digital holographic interferometry", Optics Lett., 39(13), 3722-3724. https://doi.org/10.1364/OL.39.003722.
  21. Lahmiri, S. (2014). "Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains", Health. Technol. Lett., 1(3), 104-109. https://doi.org/10.1049/htl.2014.0073.
  22. Li, Q.S., Fang, J.Q., Jeary, A.P. and Wong, C.K. (1998), "Full scale measurements of wind effects on tall buildings", J. Wind Eng. Ind. Aerod., 74, 741-750. https://doi.org/10.1016/S0167-6105(98)00067-1.
  23. Li, Q.S., Fang, J.Q., Jeary, A.P., Wong, C.K. and Liu, D.K. (2000), "Evaluation of wind effects on a supertall building based on full-scale measurements", Earthq. Eng. Struct. Dyn., 29(12), 1845-1862. https://doi.org/10.1002/1096-9845(200012)29:12<1845::AID-EQE995>3.0.CO;2-Q.
  24. Li, Q.S., Yang, K., Wong, C.K. and Jeary, A.P. (2003), "The effect of amplitude-dependent damping on wind-induced vibrations of a super tall building", J. Wind Eng. Ind. Aerod., 91(9), 1175-1198. https://doi.org/10.1016/S0167-6105(03)00080-1.
  25. Litvin, Y., Cohen, I. and Dan, C. (2010), "Monaural speech/music source separation using discrete energy separation algorithm", Signal Processing, 90(12), 3147-3163. https://doi.org/10.1016/j.sigpro.2010.05.020.
  26. Maragos, P., Kaiser, J.F. and Quatieri, T.F. (1993), "Energy separation in signal modulations with application to speech analysis", IEEE Transactions on Signal Processing, 41(10), 3024-3051. https://doi.org/10.1109/78.277799.
  27. Newmark, N.M. (1959), "A method of computation for structural dynamics", Proc. ASCE, 85(1), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  28. Potamianos, A. and Maragos, P. (1994), "A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation", Signal Processing, 37(1), 95-120. https://doi.org/10.1016/0165-1684(94)90169-4.
  29. Rebelo, C., Veljkovic, M., da Silva, L.S., Simoes, R. and Henriques, J. (2012), "Structural monitoring of a wind turbine steel tower - Part I: system description and calibration", Wind Struct., 15(4), 285-299. https://doi.org/10.12989/WAS.2012.15.4.285.
  30. Rockafellar, R.T. (1973), "A dual approach to solving nonlinear programming problems by unconstrained optimization", Mathem. Programming, 5(1), 354-373. https://doi.org/10.1007/BF01580138.
  31. Su, W.C., Huang, C.S., Chen, C.H., Liu, C.Y., Huang, H.C. and Le, Q.T. (2014), "Identifying the modal parameters of a structure from ambient vibration data via the stationary wavelet packet", Computer-Aided Civil and Infrastructure Engineering, 29(10), 738-757. http://dx.doi.org/10.1111/mice.12115.
  32. Sun, M.M., Li, Q.S. Zhou, K., He, Y.H. and Zhi, L.H. (2020), "Modal identification from non-stationary responses of high-rise buildings by variational mode decomposition and direct interpolation techniques", Int. J. Struct. Stab. Dyn., 20(11), 2050115. https://doi.org/10.1142/S0219455420501151.
  33. Wang, J.L. and Li, Z.J. (2013). "Extreme-point symmetric mode decomposition method for data analysis", Adv. Adap. Data Anal., 5(3), 1350015. https://doi.org/10.1142/S1793536913500155.
  34. Wang, T. and Liu, G. (2009), "An improved method to solve the end effect of EMD and its application on vibration signal", 2009 International Conference on Mechatronics and Automation, 3977-3981, Changchun. https://doi.org/10.1109/ICMA.2009.5244866.
  35. Wu, J.R., Liu, P.F. and Li, Q.S. (2007), "Effects of amplitude-dependent damping and time constant on wind-induced responses of super tall building", Comput. Struct., 85(15-16), 1165-1176. https://doi.org/10.1016/j.compstruc.2007.01.012.
  36. Xin, Y., Hao, H. and Li, J. (2019), "Operational modal identification of structures based on improved empirical wavelet transform", Struct. Control Health Monit., 26(3), e2323. https://doi.org/10.1002/stc.2323.
  37. Xu, A., Wu, J.R. and Zhao, R. (2014), "Wavelet-transform-based damping identification of a super-tall building under strong wind loads", Wind Struct., 19(4), 353-370. https://doi.org/10.12989/was.2014.19.4.353.
  38. Yi, J., Zhang, J.W. and Li, Q.S. (2013), "Dynamic characteristics and wind-induced responses of a super-tall building during typhoons", J. Wind Eng. Ind. Aerod., 121, 116-130. https://doi.org/10.1016/j.jweia.2013.08.006.
  39. Zeng, C.H., Huang, F.L., Liu, C.Y. and Chen, Z.Q. (2003), "Damping ratio identification method based on signal energy analysis", J. Vib. Shock, 22(2), 66-68. (In Chinese). https://doi.org/10.3969/j.issn.1000-3835.2003.02.020.
  40. Zheng, J.D., Pan, H.Y., Yang, S.B. and Cheng, J.S. (2017), "Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis", Signal Processing, 130, 305-314. https://doi.org/10.1016/j.sigpro.2016.07.023.
  41. Zhou, K., Li, Q.S. and Li, X. (2020), "Dynamic behavior of supertall building with active control system during Super Typhoon Mangkhut", J. Struct. Eng., 146(5), 04020077. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002626.