DOI QR코드

DOI QR Code

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee (Korea Atomic Energy Research Institute) ;
  • Hee-Hwan Ryu (Korea Electric Power Research Institute (KEPRI)) ;
  • Gye-Chun Cho (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Tae-Hyuk Kwon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2023.09.26
  • Accepted : 2023.11.14
  • Published : 2023.12.10

Abstract

Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

Keywords

Acknowledgement

This study was supported by a project (R23SA01) of Korea Electric Power Corporation Research Institute and by the Korea Electric Power Corporation (Grant R22XO05-11).

References

  1. Brace, W.F. (1961), "Dependence of fracture strength of rock on grain size", Proceedings of the 4th Symposium of Rock Mechanics, University Park, Penn. USA.
  2. Coalbak, P.S.B. and Wiid, B.L. (1965), "The Influence of moisture content on the compressive strength of rocks", Proceedings of the 3rd Canadian Rock Mechanics Symposium, Toronto, 65-83.
  3. Delisio, A., Zhao, J. and Einstein, H.H. (2013), "Analysis and prediction of TBM performance in blocky rock conditions at the Lotschberg Base Tunnel", Tunn. Undergr. Sp. Technol., 33(1), 131-142. https://doi.org/10.1016/j.tust.2012.06.015.
  4. Delisio, A. and Zhao, J. (2014), "A new model for TBM performance prediction in blocky rock conditions", Tunn. Undergr. Sp. Technol., 43, 440-452. https://doi.org/10.1016/j.tust.2014.06.004.
  5. Gong, Q.M., Zhao, J. and Jiang, Y.S. (2007), "In situ TBM penetration tests and rock mass boreability analysis in hard rock tunnels", Tunn. Undergr. Sp. Technol., 22(3), 303-316. https://doi.org/10.1016/j.tust.2006.07.003.
  6. Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A. and Tavakoli, H.R. (2010), "TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel", Rock Mech. Rock Eng., 43(4), 427-445. https://doi.org/10.1007/s00603-009-0060-2.
  7. Harrison, J.P. and Hudson, J.A. (2000), "Engineering Rock Mechanics", Pergamon Press, 2(5), 499.
  8. Hamidi, J.K., Shahriar, K., Rezai, B. and Rostami, J. (2010), "Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system", Tunn. Undergr. Sp. Technol., 25(4), 333-345. https://doi.org/10.1016/j.tust.2010.01.008.
  9. Houpert, R. (1970), "The uniaxial compressive strength of rocks", Proceedings of the 2nd Congress of International Society of Rock Mechanics, Belgrade.
  10. Jamshidi, A. (2018), "Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis", Model. Earth Syst. Environ., 4(1), 383-394. https://doi.org/10.1007/s40808-018-0432-2.
  11. Kobayashi, R. (1970), "On mechanical behaviour of rocks under various loading rates", Rock Mechanics in Japan, 1, 56-58.
  12. Lakshminarayana, C.R., Tripathi, A.K. and Pal, S.K. (2021), "Experimental investigation on potential use of drilling parameters to quantify rock strength", Int. J. Geo-Eng., 12(1), 23. https://doi.org/10.1186/s40703-021-00152-5.
  13. Lawal, A.I., Kim, M. and Kwon, S. (2023), "Soft computing based mathematical models for improved prediction of rock brittleness index", Geomech. Eng., 33(3), 279-289. https://doi.org/10.12989/gae.2023.33.3.279.
  14. Lee, G.J., Kwon, T.H., Cho, G.C. and Kim, K.Y. (2019a), "Preliminary Result on Full-Scale TBM Excavation Tests", Proceedings of the 32nd KKHTCNN Symposium on Civil Engineering, October 24-26, 2019, Daejeon, Korea.
  15. Lee, G.J., Kwon, T.H., Ryu, H.H., Kim, K.Y. and Oh, T.M. (2019b). "Effect of machine factors of tunnel boring machines on penetration rates in rocks", Proceedings of the World Tunnel Congress, WTC 2019 and the 45th General Assembly of the International Tunnelling and Underground Space Association, ITA-AITES 2019, CRC Press/Balkema.
  16. Lee, G.J., Ryu, H.H., Kwon, T.H., Cho, G.C., Kim, K.Y. and Hong, S. (2021), "A newly developed state-of-the-art full-scale excavation testing apparatus for Tunnel Boring Machine (TBM)", KSCE J. Civil Eng., 25(12), 4856-4867. https://doi.org/10.1007/s12205-021-2347-0.
  17. Liu, X., Zheng, Y., Hao, Q., Zhao, R., Xue, Y. and Zhang, Z. (2022), "Dynamic failure features and brittleness evaluation of coal under different confining pressure", Geomech. Eng., 30(5), 401-411. https://doi.org/10.12989/gae.2022.30.5.401.
  18. Mansouri, M. and Moomiv, H. (2010), "Influence of rock mass properties on TBM penetration rate in Karaj-Tehran water conveyance tunnel", J. Geol. Min. Res., 2(5), 114-121. https://doi.org/10.5897/JGMR.9000039.
  19. Ma, H., Gong, Q., Wang, J., Yin, L. and Zhao, X. (2016), "Study on the influence of confining stress on TBM performance in granite rock by linear cutting test", Tunn. Undergr. Space Technol., 57, 145-150. https://doi.org/10.1016/j.tust.2016.02.020.
  20. Meikle, P.G. and Holland, C.T. (1965), "The effect of friction on the strength of model coal pillar", Trans. Soc. Min. Eng. AIME, 232(4), 322-327.
  21. Naghadehi, M.Z. and Ramezanzadeh, A. (2017), "Models for estimation of TBM performance in granitic and mica gneiss hard rocks in a hydropower tunnel", Bull. Eng. Geol. Environ., 76(4), 1627-1641. https://doi.org/10.1007/s10064-016-0950-y.
  22. Naithani, A.K., Jain, P., Singh, L.G. and Rawat, D.S. (2022), "Engineering geological characteristics of the underground surge pool cavern: a case study, India", Int. J. Geo-Eng., 13(1), 7. https://doi.org/10.1186/s40703-022-00172-9.
  23. Paltrinieri, E., Sandrone, F. and Zhao, J. (2016), "Analysis and estimation of gripper TBM performances in highly fractured and faulted rocks", Tunn. Undergr. Sp. Technol., 52, 44-61. https://doi.org/10.1016/j.tust.2015.11.017.
  24. Park, D. (2023), "Stability analysis of infinite rock slopes with varying disturbances based on the Hoek-Brown failure criterion", Geomech. Eng. 33(1), 53-63. https://doi.org/10.12989/gae.2023.33.1.053.
  25. Price, N.J. (1960), "The compressive strength of coal measures rock", Colliery Engineering, 37, 283-292.
  26. Salimi, A., Rostami, J., Moormann, C. and Delisio, A. (2016), "Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs", Tunn. Undergr. Sp. Technol., 58(1), 236-246. https://doi.org/10.1016/j.tust.2016.05.009.
  27. Torabi, S. R., Shirazi, H., Hajali, H. and Monjezi, M. (2013), "Study of the influence of geotechnical parameters on the TBM performance in Tehran-Shomal highway project using ANN and SPSS", Arabian J. Geosci., 6(4), 1215-1227. https://doi.org/10.1007/s12517-011-0415-3.
  28. Yagiz, S. (2008), "Utilizing rock mass properties for predicting TBM performance in hard rock condition", Tunn. Undergr. Sp. Technol., 23(3), 326-339. https://doi.org/10.1016/j.tust.2007.04.011.
  29. Yoon, S., Jeong, H., Lee, H.L., Kim T., Hong, C.H. and Kim, J.S. (2023), "Evaluation of uniaxial compression and point load tests for compacted bentonites", Acta Geotech., 18, 4633-4644. https://doi.org/10.1007/s11440-023-01844-1.
  30. Zhang, J., Deng, R., Zhong, Z., Wu, P. and Qi, S. (2023), "An Investigation on Stress States of the Cataclastic Rock Specimen under Confined Compression Based on Modified Thick-walled Cylinder Model", KSCE J. Civil Eng., 27, 4215-4227. https://doi.org/10.1007/s12205-023-0097-x.