DOI QR코드

DOI QR Code

Impact of Service Quality on Behavioural Intention to Use Fin Tech Payment Services: An Extension of SERVEQUAL Model

  • Received : 2023.04.21
  • Accepted : 2023.12.07
  • Published : 2023.12.31

Abstract

The study aims to determine the impact of quality outcomes on behavior intentions in Financial Technology (FinTech) payment services. The study is focused on the development and testing of the impact of the SERVQUAL model on the TAM, i.e., Technology Acceptance Model for the measurement of the behavioral intention of users to use fintech payment services. The sample entails 578 specific survey responses from northern India from October to December 2022. The respondents were users of FinTech. The PLS-SEM technique was employed to explain the implementation process. Consequently, it discovered a significant relationship between the SERVQUAL models and the impact on behavioral intentions identified by TAM. The study will provide insight into the factors that impact the quality outcomes and adoption of Fintech payment services to the providers. The paper demystifies FinTech payment services in the range of perception of service quality outcomes and provides essential theories. The TAM model reflects the customer's sense of satisfaction, usefulness, and attitude. In contrast, the SERVQUAL model demonstrates the user's assessment of service quality outcomes such as quality, trust, security, and service quality positively affects behavioral intention in FinTech payment services.

Keywords

References

  1. Abdullah, F., Ward, R., and Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students' Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in human behavior, 63, 75-90. https://doi.org/10.1016/j.chb.2016.05.014
  2. Alharbi, S., and Drew, S. (2014). Using the technology acceptance model in understanding academics' behavioural intention to use learning management systems. International Journal of Advanced Computer Science and Applications, 5(1), 143-155. https://doi.org/10.14569/IJACSA.2014.050120
  3. Alhassany, H., and Faisal, F. (2018). Factors influencing the internet banking adoption decision in North Cyprus: an evidence from the partial least square approach of the structural equation modeling. Financial Innovation, 4(1), 1-21. https://doi.org/10.1186/s40854-018-0111-3
  4. Alhassany, H., and Faisal, F. (2018). Factors influencing the internet banking adoption decision in North Cyprus: an evidence from the partial least square approach of the structural equation modeling. Financial Innovation, 4(1), 1-21. https://doi.org/10.1186/s40854-018-0111-3
  5. Al-Hogail, A. A. (2018). Investigating the barriers that affect university-industry collaboration in Saudi Arabia: Empirical study. Journal of Technology Transfer, 43(3), 689-701.
  6. AL-Nawafleh, E. A., ALSheikh, G. A. A., Abdulllah, A. A., and bin A. Tambi, A. M. (2019). Review of the impact of service quality and subjective norms in TAM among telecommunication customers in Jordan. International Journal of Ethics and Systems, 35(1), 148-158. https://doi.org/10.1108/IJOES-07-2018-0101
  7. Alt, R., Beck, R., and Smits, M.T. (2018). FinTech and the transformation of the financial industry. Electronic Markets, 28, 235-243. https://doi.org/10.1007/s12525-018-0310-9
  8. Amin, M., Rezaei, S., and Abolghasemi, M. (2014). User satisfaction with mobile websites: the impact of perceived usefulness (PU), perceived ease of use (PEOU) and trust. Nankai Business Review International, 5(3), 258-274. https://doi.org/10.1108/NBRI-01-2014-0005
  9. Amin, S., and Tarun, M. T. (2021). Effect of consumption values on customers' green purchase intention: a mediating role of green trust. Social Responsibility Journal, 17(8), 1320-1336. https://doi.org/10.1108/SRJ-05-2020-0191
  10. Amoako-Gyampah, K., and Salam, A. F. (2004). An extension of the technology acceptance model in an ERP implementation environment. Information & management, 41(6), 731-745. https://doi.org/10.1016/j.im.2003.08.010
  11. Bahia, K., and Nantel, J. (2000). A reliable and valid measurement scale for the perceived service quality of banks. International Journal of Bank Marketing, 18(2), 84-91. https://doi.org/10.1108/02652320010322994
  12. Baldacchino, G. (1995). Total quality management in a luxury hotel: a critique of practice. International Journal of Hospitality Management, 14(1), 67-78. https://doi.org/10.1016/0278-4319(95)00006-X
  13. Burton-Jones, A., and Hubona, G. S. (2006). The mediation of external variables in the technology acceptance model. Information & management, 43(6), 706-717. https://doi.org/10.1016/j.im.2006.03.007
  14. Campbell, D. T., and Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105. https://doi.org/10.1037/H0046016
  15. Carman, J. M. (2000). Patient perceptions of service quality: Combining the dimensions. Journal of Services Marketing, 14(4), 337-352. https://doi.org/10.1108/08876040010334565
  16. Chen, F., Du, X., and Wang, W. (2023). Can FinTech applied to payments improve consumer financial satisfaction? Evidence from the USA. Mathematics, 11(2), 363.
  17. Chen, S., and Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial Management & Data Systems, 107(1), 21-36. https://doi.org/10.1108/02635570710719034
  18. Dalvi-Esfahani, M., Alaedini, Z., Nilashi, M., Samad, S., Asadi, S., and Mohammadi, M. (2020). Students' green information technology behavior: Beliefs and personality traits. Journal of cleaner production, 257, 120406.
  19. Daragmeh, A., Lentner, C., and Sagi, J. (2021). FinTech payments in the era of COVID-19: Factors influencing behavioral intentions of "Generation X" in Hungary to use mobile payment. Journal of Behavioral and Experimental Finance, 32, 100574. https://doi.org/10.1016/j.jbef.2021.100574
  20. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008.
  21. Devaraj, G. N., Parakh, S. R., Devraj, R., Apte, S. S., Rao, B. R., and Rambhau, D. (2002). Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. Journal of colloid and interface science, 251(2), 360-365. https://doi.org/10.1006/jcis.2002.8399
  22. Devaraj, G. N., Parakh, S. R., Devraj, R., Apte, S. S., Rao, B. R., and Rambhau, D. (2002). Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. Journal of colloid and interface science, 251(2), 360-365. https://doi.org/10.1006/jcis.2002.8399
  23. Dishaw, M. T., and Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information & Management, 36(1), 9-21. https://doi.org/10.1016/S0378-7206(98)00101-3
  24. Dwivedy, M., and Mittal, R. K. (2013). Willingness of residents to participate in e-waste recycling in India. Environmental Development, 6, 48-68. https://doi.org/10.1016/j.envdev.2013.03.001
  25. Eze, U. C., Gan, G. G. G., Ademu, J., and Tella, S. A. (2008). Modelling user trust and mobile payment adoption: a conceptual Framework. Communications of the IBIMA, 3(29), 224-231.
  26. Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  27. Frederick, P. C., and Collopy, M. W. (1989). Nesting success of five ciconiiform species in relation to water conditions in the Florida Everglades. The Auk, 106(4), 625-634.
  28. Frimpong, S. K., and Boateng, A. K. (2014). Quality service delivery in the telecommunication industry of Ghana: The perspective of MBA students of Sikkim Manipal University. International Journal of ICT and Management, 2(2), 163-170.
  29. Gold, A. H., Malhotra, A., and Segars, A. H. (2001). Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214. https://doi.org/10.1080/07421222.2001.11045669
  30. Gounaris, S., and Dimitriadis, S. (2003). Assessing service quality on the Web: Evidence from business to consumer portals. Journal of Services Marketing, 17(5), 529-548. https://doi.org/10.1108/08876040310486302
  31. Groth, J. C., and Dye, R. T. (1999). Service quality: Perceived value, expectations, shortfalls, and bonuses. Managing Service Quality: An International Journal, 9(4), 274-286. https://doi.org/10.1108/09604529910273229
  32. Gupta, M., Taneja, S., Sharma, V., Singh, A., Rupeika-Apoga, R., and Jangir, K. (2023). Does previous experience with the unified payments interface (UPI) affect the usage of central bank digital currency (CBDC)?. Journal of Risk and Financial Management, 16(6), 286.
  33. Hair Jr, J. F., Sarstedt, M., Hopkins, L., and Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. https://doi.org/10.1108/EBR-10-2013-0128
  34. Hair, J. F., Ringle, C. M., and Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202.
  35. Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
  36. Hair, J. F., Sarstedt, M., and Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. https://doi.org/10.1108/EBR-10-2013-0128
  37. Hanafizadeh, P., and Khedmatgozar, H. R. (2012). The role of service quality in the Success of internet banking: A service quality model. Service Science, 4(1), 77-93.
  38. Henseler, J., Ringle, C. M., and Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
  39. Hsu, C. L., and Lin, J. C. C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74. https://doi.org/10.1016/j.im.2007.11.001
  40. Hsu, T., Wang, Y., and Wen, S. (2006). Using the decomposed theory of planning behavioural to analyse consumer behavioural intention towards mobile text message coupons. Journal of Targeting, Measurement and Analysis for Marketing, 14, 309-324. https://doi.org/10.1057/palgrave.jt.5740191
  41. Jang, H., Reeve, J., Ryan, R. M., and Kim, A. (2009). Can self-determination theory explain what underlies the productive, satisfying learning experiences of collectivistically oriented Korean students?. Journal of educational Psychology, 101(3), 644.
  42. Jangir, K., Sharma, V., Taneja, S., and Rupeika-Apoga, R. (2022). The moderating effect of perceived risk on users' continuance intention for FinTech services. Journal of Risk and Financial Management, 16(1), 21. https://doi.org/10.3390/jrfm16010021
  43. Juliandi, A., Manurung, S., and Satriawan, B. (2018). Mengolah data penelitianbisnisdengan SPSS. LembagaPenelitiandanPenulisanIlmiah AQLI.
  44. Junger, M., and Mietzner, M. (2020). Banking goes digital: The adoption of FinTech services by German households. Finance Research Letters, 34, 101260.
  45. Kang, G., and James, J. (2004). Service quality dimensions: An examination of Gronroos's service quality model. Managing Service Quality: An International Journal, 14(4), 266-277. https://doi.org/10.1108/09604520410546806
  46. Karim, R. A., Sobhani, F. A., Rabiul, M. K., and Lepee, N. J. (2022). Linking Fintech payment services and customer loyalty intention in the hospitality industry: The mediating role of customer experience and attitude. Sustainability, 14(24), 16481. https://doi.org/10.3390/su142416481
  47. Kim, G., Shin, B., and Lee, H. G. (2008). Understanding dynamics between initial trust and usage intentions of mobile banking. Information Systems Journal, 19(3), 283-311.
  48. Kim, H. W., Xu, Y., and Gupta, S. (2017). Which is more important in internet shopping, perceived price or trust? Electronic Commerce Research and Applications, 11(3), 241-252. https://doi.org/10.1016/j.elerap.2011.06.003
  49. Ko, Y. J., and Pastore, D. L. (2005). A Hierarchial Model of Service Quality for the Recreational Sport Industry. Sport Marketing Quarterly, 14(2).
  50. Kuo, Y. F., and Yen, S. N. (2009). Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25(1), 103-110. https://doi.org/10.1016/j.chb.2008.07.007
  51. Lee, I., and Shin, Y. J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Business Horizons, 61(1), 35-46. https://doi.org/10.1016/j.bushor.2017.09.003
  52. Lee, M. K., and Turban, E. (2001). A trust model for consumer internet shopping. International Journal of electronic commerce, 75-91.
  53. Legris, P., Ingham, J., and Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & management, 40(3), 191-204. https://doi.org/10.1016/S0378-7206(01)00143-4
  54. Lewis, B. R., and Mitchell, V. W. (1990). Defining and measuring the quality of customer service. Marketing Intelligence & Planning, 8(6), 11-17. https://doi.org/10.1108/EUM0000000001086
  55. Lim, S. H., Kim, D. J., Hur, Y., and Park, K. (2019). An empirical study of the impacts of perceived security and knowledge on continuous intention to use mobile fintech payment services. International Journal of Human-Computer Interaction, 35(10), 886-898. https://doi.org/10.1080/10447318.2018.1507132
  56. Luarn, P., and Lin, H. H.(2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21(6), 873-891. https://doi.org/10.1016/j.chb.2004.03.003
  57. Mention, A. L. (2019). The future of fintech. Research-Technology Management. Research-Technology Management, 62(4), 59-63. https://doi.org/10.1080/08956308.2019.1613123
  58. Meyliana, M., and Fernando, E. (2019). The influence of perceived risk and trust in adoption of fintech services in Indonesia. CommIT (Communication and Information Technology) Journal, 13(1), 31-37. https://doi.org/10.21512/commit.v13i1.5708
  59. Miltgen, C. L., Popovic, A., and Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the "Big 3" of technology acceptance with privacy context. Decision Support Systems, 56, 103-114. https://doi.org/10.1016/j.dss.2013.05.010
  60. Mokhtar, Y., Heireche, H., Bousahla, A. A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2018). A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart structures and systems, 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  61. Mokhtar, Y., Heireche, H., Bousahla, A. A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2018). A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart structures and systems, 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  62. Mokhtar, Y., Heireche, H., Bousahla, A. A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2018). A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart structures and systems, 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  63. Muhammad Butt, M., and Cyril de Run, E. (2010). Private healthcare quality: Applying a SERVQUAL model. International Journal of Health Care Quality Assurance, 23(7), 658-673. https://doi.org/10.1108/09526861011071580
  64. Namahoot, K. S., and Laohavichien, T. (2018). Assessing the intentions to use internet banking: The role of perceived risk and trust as mediating factors. International Journal of Bank Marketing, 36(2), 256-276. https://doi.org/10.1108/IJBM-11-2016-0159
  65. Nimako, S. G. (2012). Linking quality, satisfaction and behaviour intentions in Ghana's mobile telecommunication industry. European Journal of Business and Management, 4(7), 1-17.
  66. Nimako, S. G., Azumah, F. K., Donkor, F., and Adu-Brobbey, V. (2012). Confirmatory factor analysis of service quality dimensions within mobile telephony industry in Ghana. Electronic Journal of Information Systems Evaluation, 15(2), 199-217.
  67. Nunkoo, R., Teeroovengadum, V., Ringle, C. M., and Sunnassee, V. (2020). Service quality and customer satisfaction: The moderating effects of hotel star rating. International Journal of Hospitality Management, 91, 102414. https://doi.org/10.1016/j.ijhm.2019.102414
  68. Oliveira, T., Thomas, M., Baptista, G., and Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414. https://doi.org/10.1016/j.chb.2016.03.030
  69. Parasuraman, A., Berry, L. L., and Zeithaml, V. A. (1991). Perceived service quality as a customer based performance measure: An empirical examination of organizational barriers using an extended service quality model. Human Resource Management, 30(3), 335-364. https://doi.org/10.1002/hrm.3930300304
  70. Parasuraman, A., Zeithaml, V. A., and Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of marketing, 49(4), 41-50. https://doi.org/10.1177/002224298504900403
  71. Parasuraman, A., Zeithaml, V. A., and Berry, L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40.
  72. Park, H. J., and Lin, L. M. (2020). Exploring attitude-behavior gap in sustainable consumption: Comparison of recycled and upcycled fashion products. Journal of business research, 117, 623-628. https://doi.org/10.1016/j.jbusres.2018.08.025
  73. Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134. https://doi.org/10.1080/10864415.2003.11044275
  74. Pfeffer, R. I., Kurosaki, T. T., Harrah Jr, C. H., Chance, J. M., and Filos, S. (1982). Measurement of functional activities in older adults in the community. Journal of gerontology, 37(3), 323-329. https://doi.org/10.1093/geronj/37.3.323
  75. Pfeffer, R. I., Kurosaki, T. T., Harrah Jr, C. H., Chance, J. M., and Filos, S. (1982). Measurement of functional activities in older adults in the community. Journal of gerontology, 37(3), 323-329. https://doi.org/10.1093/geronj/37.3.323
  76. Rita, P., Oliveira, T., and Farisa, A. (2019). The impact of e-service quality and customer satisfaction on customer behavior in online shopping. Heliyon, 5(10), e02690.
  77. Salo, J., and Karjaluoto, H. (2007). A conceptual model of trust in the online environment. Online information review, 31(5), 604-621. https://doi.org/10.1108/14684520710832324
  78. Schepers, J., and Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & management, 44(1), 90-103. https://doi.org/10.1016/j.im.2006.10.007
  79. Seth, N., Deshmukh, S. G., and Vrat, P. (2005). Service quality models: A review. International Journal of Quality & Reliability Management, 22(9), 913-949. https://doi.org/10.1108/02656710510625211
  80. Setiawan, B., Nugraha, D. P., Irawan, A., Nathan, R. J., and Zoltan, Z. (2021). User innovativeness and fintech adoption in indonesia. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 188. https://doi.org/10.3390/joitmc7030188
  81. Shaikh, I. M., Qureshi, M. A., Noordin, K., Shaikh, J. M., Khan, A., and Shahbaz, M. S. (2020). Acceptance of Islamic financial technology (FinTech) banking services by Malaysian users: An extension of technology acceptance model. Foresight, 22(3), 367-383. https://doi.org/10.1108/FS-12-2019-0105
  82. Shang, R. A., Chen, Y. C., and Shen, L. (2005). Extrinsic versus intrinsic motivations for consumers to shop on-line. Information & management, 42(3), 401-413. https://doi.org/10.1016/j.im.2004.01.009
  83. Shankar, A., Jebarajakirthy, C., and Ashaduzzaman, M. (2020). How do electronic word of mouth practices contribute to mobile banking adoption?. Journal of Retailing and Consumer Services, 52, 101920.
  84. Sharma, V., Gupta, M., Jangir, K., Chopra, P., and Pathak, N. (2023). The impact of post-use consumer satisfaction on smart wearables repurchase intention in the context of AI-based healthcare information. In Enhancing Customer Engagement Through Location-Based Marketing (pp. 77-101). IGI Global.
  85. Sholikah, M., and Sutirman, S. (2020). How technology acceptance model (TAM) factors of electronic learning influence education service quality through students' satisfaction. TEM Journal, 9(3), 1221.
  86. Silalahi, S. L. B., Handayani, P. W., and Munajat, Q. (2017). Service quality analysis for online transportation services: Case study of GO-JEK. Procedia Computer Science, 124, 487-495. https://doi.org/10.1016/j.procs.2017.12.181
  87. Singh, S., Sahni, M. M., and Kovid, R. K. (2020). What drives FinTech adoption? A multi-method evaluation using an adapted technology acceptance model. Management Decision, 58(8), 1675-1697. https://doi.org/10.1108/MD-09-2019-1318
  88. Souca, M. L. (2011). SERVQUAL-Thirty years of research on service quality with implications for customer satisfaction. Marketing from Information to Decision, 4, 420-429.
  89. Su, C. T., Lin, C. S., and Chiang, T. L. (2008). Systematic improvement in service quality through TRIZ methodology: An exploratory study. Total Quality Management, 19(3), 223-243. https://doi.org/10.1080/14783360701600662
  90. Tao, F., Yokozawa, M., Liu, J., and Zhang, Z. (2008). Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research, 38(1), 83-94. https://doi.org/10.3354/cr00771
  91. Venkatesh, V., and Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
  92. Venkatesh, V., Thong, J. Y. L., and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 157-178.
  93. Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., and Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. jama, 323(11), 1061-1069. https://doi.org/10.1001/jama.2020.1585
  94. Wijayanti, K., Xie, K., Kumar, A., Kamasamudram, K., and Olsson, L. (2017). Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR. Applied Catalysis B: Environmental, 219, 142-154. https://doi.org/10.1016/j.apcatb.2017.07.017
  95. Wu, H. C., and Ko, Y. J. (2013). Assessment of service quality in the hotel industry. Journal of Quality Assurance in Hospitality & Tourism, 14(3), 218-244. https://doi.org/10.1080/1528008X.2013.802557
  96. Yildiz, S., and Yildiz, E. (2015). Service quality evaluation of restaurants using the AHP and TOPSIS method. Journal of Social and Administrative Sciences, 2(2), 53-61.
  97. Yoon, J. G., Yoon, J., Song, J. Y., Yoon, S. Y., Lim, C. S., Seong, H., Noh, J. Y., Cheong, H. J., and Kim, W. J. (2020). Clinical significance of a high SARS-CoV-2 viral load in the saliva. Journal of Korean medical science, 35(20).
  98. Zabkar, V., Brencic, M. M., and Dmitrovic, T. (2010). Modelling perceived quality, visitor satisfaction and behavioural intentions at the destination level. Tourism Management, 31(4), 537-546. https://doi.org/10.1016/j.tourman.2009.06.005
  99. Zaltman, G., and Moorman, C. (1988). The importance of personal trust in the use of research. Journal of Advertising Research, 28(5), 16-24.
  100. Zhou, Q., Lim, F. J., Yu, H., Xu, G., Ren, X., Liu, D., Wang, X., Main, X., and Xu, H. (2021). A study on factors affecting service quality and loyalty intention in mobile banking. Journal of Retailing and Consumer Services, 60, 102424. https://doi.org/10.1016/j.jretcon ser.2020.102424
  101. Zhou, T. (2012). Understanding users' initial trust in mobile banking: An elaboration likelihood perspective. Computers in Human Behavior, 28(4), 1518-1525. https://doi.org/10.1016/j.chb.2012.03.021
  102. Ziegler, T., Suresh, K., Garvey, K., Rowan, P., Zhang, B. Z., Obijiaku, A., Rui, H., and Alqahtani, F. (2020). The 2nd Annual Middle East & Africa Alternative Finance Industry Report. University of Campridge.