DOI QR코드

DOI QR Code

솔레노이드에 의해 정렬된 강섬유가 휨파괴 거동에 미치는 영향

Effect of Aligned Steel Fibers by a Solenoid on Flexural Fracture Behavior

  • 이규필 (건설기술연구원 지반연구본부) ;
  • 문도영 (경성대학교 토목공학과)
  • 투고 : 2023.11.23
  • 심사 : 2023.12.08
  • 발행 : 2023.12.31

초록

본 논문에서는 전자기장 노출을 통한 강섬유의 방향 정렬 방법이 휨파괴거동에 미치는 영향을 비교, 분석하였다. 강섬유의 방향을 휨공시체의 종방향으로 정렬할 수 있는 규모의 솔레노이드를 설계, 제작하였다. 설계강도 30MPa의 강섬유보강콘크리트 휨공시체를 제작하였으며, 이를 전자기장에 노출한 공시체와 노출하지 않은 공시체로 구분하여 휨파괴 실험을 수행하였다. 실험변수는 강섬유의 혼입률과 형상비로 하였다. 실험결과, 전자기장에 노출된 시험체의 휨강도, 최대하중에서의 개구변위가 미소하게 증가하였으며, 특히 파괴에너지의 증가가 명확하게 확인되었다. 잔존강도의 증가가 파괴에너지 증가에 가장 큰 영향을 준 것으로 확인되었다.

This paper investigates the effect of directional alignment of steel fibers using an electromagnetic field on the flexural fracture behavior of steel fiber reinforced concrete. A specially designed and manufactured solenoid, capable of aligning steel fibers in the longitudinal direction of the beam specimen, was employed for this purpose. Beam specimens with a design strength of 30 MPa were produced, and failure tests were conducted on specimens exposed to electromagnetic fields and those without exposure. Experimental variables included the mixing ratio and aspect ratio of steel fibers. The results of the experiments revealed a slight increase in flexural strength and crack mouth opening displacement at the maximum load for specimens exposed to the electromagnetic field. Notably, a significant enhancement in fracture energy was observed.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2023006881).

참고문헌

  1. Blanco, A., Pujadas, P., De la Fuente, A., Cavalaro, S. H. P., and Aguado, A. (2016), Influence of the type of fiber on the structural response and design of FRC slabs, Journal of Structural Engineering, 142(9), 04016054.
  2. Kang, S. T., and Kim, J. K. (2012), Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution, Construction and Building Materials, 28(1), 57-65. https://doi.org/10.1016/j.conbuildmat.2011.07.003
  3. Michels, J., and Gams, M. (2016), Preliminary study on the influence of fibre orientation in fibre reinforced mortars, Gradevinar, 68(8), 645-655.
  4. Javahershenas, F., Gilani, M. S., and Hajforoush, M. (2021), Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC), Journal of Building Engineering, 35, 101975.
  5. Hajforoush, M., Kheyroddin, A., and Rezaifar, O. (2020), Investigation of engineering properties of steel fiber reinforced concrete exposed to homogeneous magnetic field, Construction and Building Materials, 252, 119064.
  6. Ferrandez, D., Saiz, P., Moron, C., Dorado, M. G., and Moron, A. (2019), Inductive method for the orientation of steel fibers in recycled mortars, Construction and Building Materials, 222, 243-253. https://doi.org/10.1016/j.conbuildmat.2019.06.113
  7. Banfill, P. F. G. (2005), The rheology of fresh mortar-a review. In 6th Brazilian and 1st International Symposium on Mortar Technology.
  8. AO Barros, J., and Sena Cruz, J. (2001), Fracture energy of steel fiber-reinforced concrete, Mechanics of Composite Materials and Structures, 8(1), 29-45. https://doi.org/10.1080/107594101459815
  9. Zhang, P., Wang, C., Gao, Z., and Wang, F. (2023), A review on fracture properties of steel fiber reinforced concrete, Journal of Building Engineering, 105975.
  10. Medeghini, F., Guhathakurta, J., Tiberti, G., Simon, S., Plizzari, G. A., and Mark, P. (2022), Steered fiber orientation: correlating orientation and residual tensile strength parameters of SFRC, Materials and Structures, 55(10), 251.