DOI QR코드

DOI QR Code

지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes

  • 이상문 (국립강릉원주대학교 스마트인프라연구소) ;
  • 배영준 (국립강릉원주대학교 건설환경공학과) ;
  • 정우영 (국립강릉원주대학교 건설환경공학과)
  • 투고 : 2023.11.02
  • 심사 : 2023.12.01
  • 발행 : 2023.12.31

초록

일반적으로 대용량의 수소를 저장하기 위해 사용되는 수직형 원통 용기는 강재로 제작되며, 사용 환경을 고려하여 제작된 받침 콘크리트 상부에 기초 슬래브에 선 설치된 앵커로 고정하는 방식이 사용된다. 이와 같은 방식은 지진과 같은 외력이 작용될 시 정착부에 응력이 집중될 수 있으며, 앵커 및 콘크리트 손상으로 인한 구조물의 전도 피해가 발생할 수 있다. 본 연구는 현장 조사를 통한 실제 운용중인 수직형 수소 저장용기를 특정하여 3차원 유한요소로 모델링하였고, 비 구조 요소의 내진 성능 검토에 사용되는 ICC - ES AC 156의 인공 지진 및 규모 5.0 이상의 국내 기록지진을 적용하여 거동 특성을 분석하였다. 실제 규모로 제작된 구조물을 대상으로 실험을 진행하는 것이 타당하지만 현실적 제약으로 수행하기에 어려움이 있어 해석적 접근 방식을 통하여 대상 구조물의 안전성을 검토하였다. 거동 특성의 경우 지진동에 의해 발생된 구조물의 응답 가속도는 검토되는 지진 하중 대비 평균적으로 10 배 이상 크게 증폭이 되는 것으로 나타났으며, 무게 중심이 위치되는 지점으로 전달될수록 감소되는 경향을 보였다. 취약 부위로 예상되는 하부 시스템(지지 기둥 및 앵커 정착부)의 경우 허용 응력을 만족하는 것으로 나타났지만, 정착을 위한 받침 콘크리트의 쪼갬 및 인장 강도는 허용 응력 대비 약 5 % 정도의 여유만이 있어 이에 대한 대처 방안이 요구된다. 본 논문에서 제시된 연구 결과를 바탕으로 향후 진동대 시험을 통하여 수행이 되는 수소저장 용기 제작에 필요한 설계 하중 및 조건 등의 기초자료로 활용될 수 있을 것으로 사료된다.

In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

키워드

과제정보

본 연구는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업 및 기초연구사업의 지원으로 수행되었습니다(2022RIS-005, 2022R1A6A3A01086071).

참고문헌

  1. Park, E. S., Jung, Y. B., and Oh, S. W. (2022), Carbon Neutrality and Underground Hydrogen Storage, Journal of The Korean Society of Mineral and Energy Resources Engineers, 59(5), 462-473 (in Korean). https://doi.org/10.32390/ksmer.2022.59.5.462
  2. Lee, S. K., Mogi, G., Kim, J. W., and Shin, S. C. (2007), Strategy of energy technology development for establishing the hydrogen economy, Transactions of the Korean Hydrogen and New Energy Society, 18(2), 207-215 (in Korean).
  3. Kim, B. J., Kim, J. W., and Go, H. M. (2011), Economic Evaluation of Domestic Low-Temperature Water Electrolysis Hydrogen Production, Trans. of the Korean Hydrogen and New Energy Society, 22(4), 559-567 (in Korean).
  4. Gang, B. H., and Kim, S. Y. (2001), Liquid hydrogen storage technology, Transactions of the Korean Hydrogen and New Energy society, 12(2), 87-102 (in Korean).
  5. Nam, J. M., Kang, K. M., and Ju, H. C. (2010), Numerical Study of Hydrogen Absorption in a Metal Hydride Hydrogen Storage Vessel, Trans. of the Korean Hydrogen and New Energy Society, 21(4), 249-257 (in Korean).
  6. Kim, N. H., and Lee, J. H. (2011), Ensuring the materials and safety of hydrogen storage vessels, Journal of the KSME, 51(11), 32-36 (in Korean).
  7. Lee, S. M., Lee, I. W., and Jung, W. Y. (2023), Experimental and numerical studies for the performance verification of post-installed anchors used in electrical cabinet fixation, Journal of Asian Architecture and Building Engineering, 1-15.
  8. Wei, G., and Zhang, J. (2020), Numerical study of the filling process of a liquid hydrogen storage tank under different sloshing conditions, Processes, 8(9), 1020.
  9. American Society of Civil Engineers (2013), Seismic evaluation and retrofit of existing buildings (ASCE/ SEI 41-13), Reston, Virginia.
  10. Lee, S. M., Jeon, B. G., and Jung, W. Y. (2022), Evaluation of vibration characteristics according to changes in the fixing conditions of the electrical cabinet in power plants under an earthquake, Earthquakes and Structures, 23(3), 245-257. https://doi.org/10.12989/EAS.2022.23.3.245
  11. Jeon, B. G., Yun, D. W., Shin, Y. J., and Jung, W. Y. (2019), Seismic performance evaluation for hydroelectric power plants RTU panel by shaking table tests, Transactions of the Korean Society for Noise and Vibration Engineering, 29(6), 770-779 (in Korean). https://doi.org/10.5050/KSNVE.2019.29.6.770
  12. Kwon, S. J. (2013), Durability Evaluation and Defect Pattern Analysis in Railway Bridge Through Field Investigation, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(1), 010-020. https://doi.org/10.11112/jksmi.2013.17.1.010
  13. Kwon, Y. W., Park, S. C., and Kim, M. S. (2006), Strength prediction equations for high strength concrete by Schmidt Hammer Test, Journal of the Korea Concrete Institute, 18(3), 389-395 (in Korean). https://doi.org/10.4334/JKCI.2006.18.3.389
  14. Kim, M. S., and Chun, K. W. (2023), A Comprehensive Review on Material Compatibility and Safety Standards for Liquid Hydrogen Cargo and Fuel Containment Systems in Marine Applications, Journal of Marine Science and Engineering, 11(10), 1927.
  15. Ryu, S. H., Yun, H. D., Kim, S. W., Lee, K. S., and Kim, Y. C. (2011). Nonlinear Behavior of Seismic-Strengthened Domestic School Building. Journal of the Korea Institute for Structural Maintenance and Inspection, 15(1), 243-253 (in Korean). https://doi.org/10.11112/jksmi.2011.15.1.243
  16. Park, W. I., and Kang, S. K. (2020), Analysis of Safety by Expansion of Hydrogen Charging Station Facilities, Journal of the Korean Institute of Gas, 24(6), 83-90 (in Korean). https://doi.org/10.7842/KIGAS.2020.24.6.83
  17. Hur, J. (2012), Seismic performance evaluation of switchboard cabinets using nonlinear numerical models, Georgia Institute of Technology.
  18. Shaheen, M. A., Tsavdaridis, K. D., and Salem, E. (2017), Effect of grout properties on shear strength of column base connections: FEA and analytical approach, Engineering Structures, 152, 307-319. https://doi.org/10.1016/j.engstruct.2017.08.065
  19. Lee, J., and Fenves, G. L. (1998), Plastic-damage model for cyclic loading of concrete structures, Journal of Engineering Mechanics, 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  20. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. B., and Karimzade, K. (2017), Simplified damage plasticity model for concrete, Structural Engineering International, 27(1), 68-78. https://doi.org/10.2749/101686616X1081
  21. Bang, J. S., Youn, I. R., Kwon, Y. S., and Yim, H. J. (2020), Nonlinear Tensile Behavior Analysis of Torque-controlled Expansion Anchors Using Finite Element Analysis, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(4), 91-99 (in Korean). https://doi.org/10.11112/JKSMI.2020.24.4.91
  22. Jiang, X. M., Chen, H., and Liew, J. R. (2002), Spread-of-plasticity analysis of three-dimensional steel frames, Journal of Constructional Steel Research, 58(2), 193-212. https://doi.org/10.1016/S0143-974X(01)00041-4
  23. Hu, J., Y., and Cha, Y., W. (2016), Seismic Behavior of 3-Story Steel Frame Structures Subjected to Ground Motions. Journal of Korean Society of Steel Construction, 28(6), 383-394 (in Korean). https://doi.org/10.7781/kjoss.2016.28.6.383
  24. Korea Concrete Institute (2010), Design Method for concrete Anchors and Examples, 2nd Ed., Korea (in Korean).
  25. Korea Construction Standards Center (2021), Anchor design code for concrete KDS 14 20 54 , pp.25.
  26. Gerges, N. N., Issa, C. A., and Fawaz, S. (2015), Effect of construction joints on the splitting tensile strength of concrete, Case Studies in Construction Materials, 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  27. Issa, C. A., Gerges, N. N., and Fawaz, S. (2014), The effect of concrete vertical construction joints on the modulus of rupture, Case Studies in Construction Materials, 1, 25-32. https://doi.org/10.1016/j.cscm.2013.12.001