DOI QR코드

DOI QR Code

Improvement of Seismic Performance Evaluation Method for Concrete Dam Pier by Applying Maximum Credible Earthquake(MCE)

가능최대지진(MCE)을 적용한 콘크리트 댐 피어부 내진성능평가 방안 개선

  • 오정근 (국토안전관리원 댐항만실) ;
  • 정영석 (텍사스 주립대학교 알링턴 캠퍼스) ;
  • 권민호 (경상국립대학교 토목공학과)
  • Received : 2023.07.25
  • Accepted : 2023.10.21
  • Published : 2023.12.31

Abstract

This paper assesses the suitability of existing standards for plastic material models and performance level evaluation methods in seismic performance evaluations of concrete dam piers during Maximum Credible Earthquakes (MCE). Dynamic plastic analysis was conducted to examine the applicability of the plastic material model under various conditions. As a result reveal that when the minimum reinforcement ratio is not met, the average stress-average strain method recommended in current dam seismic performance evaluation guidelines tends to underestimate pier responses compared to the predicted outcomes of dynamic elastic analysis. Consequently, the paper proposes an improvement plan that treats dam piers with an insufficient minimum reinforcement ratio as unreinforced and integrates fracture energy into concrete tensile behavior characteristics for performance level evaluation. Implementing these improvements can lead to more conservative evaluation outcomes compared to current seismic performance evaluation methods.

본 논문에서는 MCE를 적용한 콘크리트 댐 피어부의 동적소성해석을 통한 내진성능평가 수행 시 소성재료모델, 성능수준 평가 방법에 대한 현행 기준의 적용성을 검토하고 개선안을 제시하였다. 다양한 조건으로 동적소성해석을 수행하여 소성재료모델에 대한 적용성을 검토하였고, 그 결과 현행 댐 내진성능평가요령에서 제시하는 평균응력-평균변형률 기법은 최소철근비가 확보되지 않은 조건에서 동적탄성해석으로 예측한 결과보다 피어부의 응답을 과소평가하는 것으로 확인되었다. 따라서 최소철근비가 확보되지 않은 댐 피어부는 무근콘크리트로 간주하여 콘크리트 인장거동특성에 파괴에너지를 적용하는 방법으로 피어부 성능수준을 평가하도록 하는 개선안을 도출하였다. 개선사항 적용할 경우 현행 내진성능평가 방법보다 보수적인 평가결과를 도출할 수 있다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2019R1A2C1003007).

References

  1. Ministry of Land, Infrastructure and Transport, Dam seismic design KDS 54 17 : 2019, Available at: https://www. kcsc.re.kr/Home/Index (in Korean).
  2. Ministry of Land, Infrastructure and Transport, Korea Intrastructure Safety & Technology Corporation (2019), Seismic performance evaluation and improvement tips for existing facilities (Dam), Available at: http://www.kalis.or.kr (in Korean).
  3. U.S. Army Corps Of Enineers. (2007), Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053). Available at: https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/
  4. Alfarah, B., Lopez-Almansa, F., and Oller, S. (2017), New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures, Engineering Structures, 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022
  5. Okamura, H., and Maekawa, K. (1991), Nonlinear Analysis and Constitutive Models of Reinforced Concrete, Gihodo Shuppan Company, Tokyo (Japan).
  6. ABAQUS, Dassault System Simulia Corp. (2011), Abaqus Analysis User's Manual. Version 6.10, Available at: http://130.149.89.49:2080/v6.11/index.html
  7. Park, K. W. (2015), Cracking Behavior and Tension Stiffening Effect Model in RC Tension Members Reinforced with Steel Fibers, [Doctoral dissertation, Chonnam National University], Chonnam national university Library, Available at: https://lib.jnu.ac.kr/search/detail/CATTOT000013610271 (in Korean).
  8. Hsu, T. T. C. (1993), Unified Theory of Reinforced Concrete, CRC Press, New York(USA), https://doi.org/10.1201/9780203734650
  9. Ministry of Land, Infrastructure and Transport, Korea Intrastructure Safety & Technology Corporation (2011), Guidelines for Seismic Performance Evaluation of Existing Facilities (Bridges), Available at: http://www.kalis.or.kr (in Korean).
  10. Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989), A Plastic-Damage Model for Concrete, International Journal of Solids and Structures, 25(3), 299-326, https://doi.org/10.1016/0020-7683(89)90050-4
  11. Lee, J. H. (2001), Damage Analysis of Reinforced Concrete Columns under Cyclic Loading, KCI Concrete Journal. 13(2), 67-74, Available at: https://www.kci.or.kr/pages_publication/ijcsm_journals.vm (in Korean).
  12. Choi, J. K. (2017), Finite Element Method for Structure Analysis, bookshill, Korea, ISBN:979-11-5971-089-6, Available at: http://www.bookshill.com/bbs/board.php?bo_table=book9&wr_id=31 (in Korean).
  13. Nuclear and Industrial Safety Agency (NISA), under Ministry of Economy, Trade and Industry (METI) in Japan (2012), Seismic performance investigation manual for hydroelectric power generation facilities, J-POWER, (in Japanese), Available at: https://iss.ndl.go.jp/books/R100000002-I023758304-00