DOI QR코드

DOI QR Code

고온수성가스전이반응 적용을 위한 Cu-CeO2-MgO 촉매의 제조방법 최적화

An Optimization of Synthesis Method for High-temperature Water-gas Shift Reaction over Cu-CeO2-MgO Catalyst

  • 전이정 (원광대학교 화학공학과) ;
  • 김창현 (원광대학교 화학공학과) ;
  • 심재오 (원광대학교 화학공학과)
  • I-Jeong Jeon (Department of Chemical Engineering, Wonkwang University) ;
  • Chang-Hyeon Kim (Department of Chemical Engineering, Wonkwang University) ;
  • Jae-Oh Shim (Department of Chemical Engineering, Wonkwang University)
  • 투고 : 2023.12.14
  • 심사 : 2023.12.18
  • 발행 : 2023.12.31

초록

최근 탄소중립과 관련하여 연소 시 이산화탄소 배출이 없어 청정한 수소에너지에 대한 관심이 증가하고 있다. 이에 따라 수소 생산에 관련된 연구가 계속되고 있으며 본 연구에서는 폐기물을 처리함과 동시에 고순도 수소를 생산하기 위해 폐기물 유래 합성가스를 수성가스전이반응에 적용하였다. 마그네슘을 세륨과 함께 지지체로 사용하여 고온수성가스전이(HT-WGS)반응에서 촉매의 활성을 향상시키고자 하였다. HT-WGS 반응의 활성물질로 구리를 사용해 Cu-CeO2-MgO 촉매를 제조하였으며, 제조방법에 따른 촉매활성 연구를 진행하였다. HT-WGS 반응 결과 함침법으로 제조된 Cu-CeO2-MgO 촉매가 가장 높은 활성을 보였으며, 이는 가장 높은 산소 저장능과 많은 활성 Cu 종을 가지는 특성에 기인한 결과이다.

Recently, there has been a growing interest in clean hydrogen energy that does not emit carbon dioxide during combustion due to the increasing focus on carbon neutral. Research related to hydrogen production continues, and in this study, we applied waste-derived synthesis gas to the water-gas shift reaction to simultaneously treat waste and produce high-purity hydrogen. To enhance catalytic activity in the high-temperature water-gas shift (HT-WGS) reaction, magnesium was used as a support material alongside cerium. Cu-CeO2-MgO catalysts were synthesized, with copper acting as the active component for the HT-WGS reaction. A study on the catalytic activity based on the preparation method was conducted, and the Cu-CeO2-MgO catalyst prepared by impregnation method exhibited the highest activity in the HT-WGS reaction. The observed superior performance of the Cu-CeO2-MgO catalyst prepared through the impregnation method can be attributed to its significantly higher oxygen storage capacity and amount of active Cu species.

키워드

과제정보

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2023RIS-008).

참고문헌

  1. Roy, P., Pal, S. C., Chakrabortty, R., Chowdhuri, I., Saha, A., and Shit, M., "Effects of Climate Change and Sea-Level Rise on Coastal Habitat: Vulnerability Assessment, Adaptation Strategies and Policy Recommendations," J. Environ. Manage., 330, 117187 (2023).
  2. Wei, Y. M., Wang, L., Liao, H., Wang, K., Murty, T., and Yan, J., "Responsibility Accounting in Carbon Allocation: A Global Perspective," Appl. Energy, 130, 122-133 (2014). https://doi.org/10.1016/j.apenergy.2014.05.025
  3. Yan, Y., "Application of the Principle of Common but Differentiated Responsibility and Respective Capabilities to the Passive Mitigation and Active Removal of Space Debris," Acta Astronaut., 209, 117-131 (2023). https://doi.org/10.1016/j.actaastro.2023.04.033
  4. https://www.britannica.com/topic/common-but-differentiated-responsibilities. (accessed Dec. 2023).
  5. Gong, J. H., Jeon, K. W., Kim, M. J., Back, S., Shim, J. O., Roh, H. S., and Jang, W. J., "Design of High-Temperature Shift Using Waste-derived Synthesis Gas: Thermodynamic Approach and Practical Reaction Optimization," Energy Convers. Manag., 293, 117509 (2023).
  6. Jeong, D. Y., "An Effectiveness Analysis of Climate Change Policy in South Korea," J. Environ. Impact Assess., 20(5), 585-600 (2011). https://doi.org/10.14249/EIA.2011.20.5.585
  7. Lee, Y., Cho, S., and Seo, Y., "Realizing 2050 Net-zero in South Korea: From Adaptive Reduction to Proactive Response," Futures, 154, 103267 (2023).
  8. Lee, Y. L., Lee, K., Ko, C. H., and Roh, H. S., "Optimization of Nano-Catalysts for Application in Compact Reformers," Chem. Eng. J., 431, 134299 (2022).
  9. Jeong, D. W., Jang, W. J., Shim, J. O., Han, W. B., Jeon, K. W., Seo, Y. C., Roh, H. S., Gu, J. H., and Lim, Y. T., "A Comparison Study on High-Temperature Water-Gas Shift Reaction Over Fe/Al/Cu and Fe/Al/Ni Catalysts Using Simulated Waste-derived Synthesis Gas," J. Mater. Cycles Waste Manag., 16, 650-656 (2014). https://doi.org/10.1007/s10163-014-0272-8
  10. Jin, S., Park, Y., Bang, G., Vo, N. D., and Lee, C. H., "Revisiting Magnesium Oxide to Boost Hydrogen Production via Water-Gas Shift Reaction: Mechanistic Study to Economic Evaluation," Appl. Catal. B: Environ., 284, 119701 (2021).
  11. Liu, X., Guo, P., Xie, S., Pei, Y., Qiao, M., and Fan, K., "Effect of Cu Loading on Cu/ZnO Wateregas Shift Catalysts for Shut-down/Start-up Operation," Int. J. Hydrog. Energy, 37(8), 6381-6388 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.110
  12. Lee, S. H., Kim, J. N., Eom, W. H., Ryi, S. K., Park, J. S., and Baek, I. H., "Development of Pilot WGS/Multi-layer Membrane for CO2 Capture," Chem. Eng. J., 207, 521-525 (2012).
  13. Reina, T. R., Ivanova, S., Delgado, J. J., Ivanov, I., Idakiev, V., Tabakova, T., Centeno, M. A., and Odriozola, J. A., "Viability of Au/CeO2-ZnO/Al2O3 Catalysts for Pure Hydrogen Production by the Water-Gas Shift Reaction," ChemCatChem, 6(5), 1401-1409 (2014). https://doi.org/10.1002/cctc.201300992
  14. Shim, J. O., Na, H. S., Jha, A., Jang, W. J., Jeong, D. W., Nah, I. W., Jeon, B. H., and Roh, H. S., "Effect of Preparation Method on the Oxygen Vacancy Concentration of CeO2-promoted Cu/γ-Al2O3 Catalysts for HTS Reactions," Chem. Eng. J., 306, 908-915 (2016). https://doi.org/10.1016/j.cej.2016.08.030
  15. Zhao, Y., Jalal, A., and Uzun, A., "Interplay between Copper Nanoparticle Size and Oxygen Vacancy on Mg-Doped Ceria Controls Partial Hydrogenation Performance and Stability," ACS Catal., 11(13), 8116-8131 (2021). https://doi.org/10.1021/acscatal.1c01471
  16. He, J., Xu, T., Wang, Z., Zhang, Q., Deng, W., and Wang, Y., "Transformation of Methane to Propylene: A Two-Step Reaction Route Catalyzed by Modified CeO2 Nanocrystals and Zeolites," Angew. Chem. Int. Ed., 51(10), 2438-2442 (2012). https://doi.org/10.1002/anie.201104071
  17. Kang, M., Wu, X., Zhang, J., Zhao, N., Wei, W., and Sun, Y., "Enhanced Thermochemical CO2 Splitting over Mg- and Ca-doped Ceria/Zirconia Solid Solutions," RSC Adv., 4(11), 5583-5590 (2014). https://doi.org/10.1039/c3ra45595e
  18. Djinovic, P., Batista, J., and Pintar, A., "Calcination Temperature and CuO Loading Dependence on CuO-CeO2 Catalyst Activity for Water-gas Shift Reaction," Appl. Catal. A: Gen., 347(1), 23-33 (2008). https://doi.org/10.1016/j.apcata.2008.05.027
  19. Zabilskiy, M., Erjavec, B., Djinovic, P., and Pintar, A., "Ordered Mesoporous CuO-CeO2 Mixed Oxides as an Effective Catalyst for N2O Decomposition," Chem. Eng. J., 254, 153-162 (2014). https://doi.org/10.1016/j.cej.2014.05.127
  20. Lee, R. R., Jeon, I. J., Jang, W. J., Roh, H. S., and Shim, J. O., "Advances in Catalysts for Water-Gas Shift Reaction Using Waste-Derived Synthesis Gas," Catalysts, 13(4), 710 (2023).
  21. Mock, S. A., Sharp, S. E., Stoner, T. R., Radetic, M. J., Zell, E. T., and Wang, R., "CeO2 Nanorods-supported Transition Metal Catalysts for CO Oxidation," J. Colloid Interface Sci., 466, 261-267 (2016). https://doi.org/10.1016/j.jcis.2015.12.026
  22. Lykaki, M., Pachatouridou, E., Carabineiro, S. A., Iliopoulou, E., Andriopoulou, C., Kallithrakas-Kontos, N., Boghosian, S., and Konsolakis, M., "Ceria Nanoparticles Shape Effects on the Structural Defects and Surface Chemistry: Implications in CO Oxidation by Cu/CeO2 Catalysts," Appl. Catal. B: Environ., 230, 18-28 (2018). https://doi.org/10.1016/j.apcatb.2018.02.035