과제정보
본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2023RIS-008).
참고문헌
- Roy, P., Pal, S. C., Chakrabortty, R., Chowdhuri, I., Saha, A., and Shit, M., "Effects of Climate Change and Sea-Level Rise on Coastal Habitat: Vulnerability Assessment, Adaptation Strategies and Policy Recommendations," J. Environ. Manage., 330, 117187 (2023).
- Wei, Y. M., Wang, L., Liao, H., Wang, K., Murty, T., and Yan, J., "Responsibility Accounting in Carbon Allocation: A Global Perspective," Appl. Energy, 130, 122-133 (2014). https://doi.org/10.1016/j.apenergy.2014.05.025
- Yan, Y., "Application of the Principle of Common but Differentiated Responsibility and Respective Capabilities to the Passive Mitigation and Active Removal of Space Debris," Acta Astronaut., 209, 117-131 (2023). https://doi.org/10.1016/j.actaastro.2023.04.033
- https://www.britannica.com/topic/common-but-differentiated-responsibilities. (accessed Dec. 2023).
- Gong, J. H., Jeon, K. W., Kim, M. J., Back, S., Shim, J. O., Roh, H. S., and Jang, W. J., "Design of High-Temperature Shift Using Waste-derived Synthesis Gas: Thermodynamic Approach and Practical Reaction Optimization," Energy Convers. Manag., 293, 117509 (2023).
- Jeong, D. Y., "An Effectiveness Analysis of Climate Change Policy in South Korea," J. Environ. Impact Assess., 20(5), 585-600 (2011). https://doi.org/10.14249/EIA.2011.20.5.585
- Lee, Y., Cho, S., and Seo, Y., "Realizing 2050 Net-zero in South Korea: From Adaptive Reduction to Proactive Response," Futures, 154, 103267 (2023).
- Lee, Y. L., Lee, K., Ko, C. H., and Roh, H. S., "Optimization of Nano-Catalysts for Application in Compact Reformers," Chem. Eng. J., 431, 134299 (2022).
- Jeong, D. W., Jang, W. J., Shim, J. O., Han, W. B., Jeon, K. W., Seo, Y. C., Roh, H. S., Gu, J. H., and Lim, Y. T., "A Comparison Study on High-Temperature Water-Gas Shift Reaction Over Fe/Al/Cu and Fe/Al/Ni Catalysts Using Simulated Waste-derived Synthesis Gas," J. Mater. Cycles Waste Manag., 16, 650-656 (2014). https://doi.org/10.1007/s10163-014-0272-8
- Jin, S., Park, Y., Bang, G., Vo, N. D., and Lee, C. H., "Revisiting Magnesium Oxide to Boost Hydrogen Production via Water-Gas Shift Reaction: Mechanistic Study to Economic Evaluation," Appl. Catal. B: Environ., 284, 119701 (2021).
- Liu, X., Guo, P., Xie, S., Pei, Y., Qiao, M., and Fan, K., "Effect of Cu Loading on Cu/ZnO Wateregas Shift Catalysts for Shut-down/Start-up Operation," Int. J. Hydrog. Energy, 37(8), 6381-6388 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.110
- Lee, S. H., Kim, J. N., Eom, W. H., Ryi, S. K., Park, J. S., and Baek, I. H., "Development of Pilot WGS/Multi-layer Membrane for CO2 Capture," Chem. Eng. J., 207, 521-525 (2012).
- Reina, T. R., Ivanova, S., Delgado, J. J., Ivanov, I., Idakiev, V., Tabakova, T., Centeno, M. A., and Odriozola, J. A., "Viability of Au/CeO2-ZnO/Al2O3 Catalysts for Pure Hydrogen Production by the Water-Gas Shift Reaction," ChemCatChem, 6(5), 1401-1409 (2014). https://doi.org/10.1002/cctc.201300992
- Shim, J. O., Na, H. S., Jha, A., Jang, W. J., Jeong, D. W., Nah, I. W., Jeon, B. H., and Roh, H. S., "Effect of Preparation Method on the Oxygen Vacancy Concentration of CeO2-promoted Cu/γ-Al2O3 Catalysts for HTS Reactions," Chem. Eng. J., 306, 908-915 (2016). https://doi.org/10.1016/j.cej.2016.08.030
- Zhao, Y., Jalal, A., and Uzun, A., "Interplay between Copper Nanoparticle Size and Oxygen Vacancy on Mg-Doped Ceria Controls Partial Hydrogenation Performance and Stability," ACS Catal., 11(13), 8116-8131 (2021). https://doi.org/10.1021/acscatal.1c01471
- He, J., Xu, T., Wang, Z., Zhang, Q., Deng, W., and Wang, Y., "Transformation of Methane to Propylene: A Two-Step Reaction Route Catalyzed by Modified CeO2 Nanocrystals and Zeolites," Angew. Chem. Int. Ed., 51(10), 2438-2442 (2012). https://doi.org/10.1002/anie.201104071
- Kang, M., Wu, X., Zhang, J., Zhao, N., Wei, W., and Sun, Y., "Enhanced Thermochemical CO2 Splitting over Mg- and Ca-doped Ceria/Zirconia Solid Solutions," RSC Adv., 4(11), 5583-5590 (2014). https://doi.org/10.1039/c3ra45595e
- Djinovic, P., Batista, J., and Pintar, A., "Calcination Temperature and CuO Loading Dependence on CuO-CeO2 Catalyst Activity for Water-gas Shift Reaction," Appl. Catal. A: Gen., 347(1), 23-33 (2008). https://doi.org/10.1016/j.apcata.2008.05.027
- Zabilskiy, M., Erjavec, B., Djinovic, P., and Pintar, A., "Ordered Mesoporous CuO-CeO2 Mixed Oxides as an Effective Catalyst for N2O Decomposition," Chem. Eng. J., 254, 153-162 (2014). https://doi.org/10.1016/j.cej.2014.05.127
- Lee, R. R., Jeon, I. J., Jang, W. J., Roh, H. S., and Shim, J. O., "Advances in Catalysts for Water-Gas Shift Reaction Using Waste-Derived Synthesis Gas," Catalysts, 13(4), 710 (2023).
- Mock, S. A., Sharp, S. E., Stoner, T. R., Radetic, M. J., Zell, E. T., and Wang, R., "CeO2 Nanorods-supported Transition Metal Catalysts for CO Oxidation," J. Colloid Interface Sci., 466, 261-267 (2016). https://doi.org/10.1016/j.jcis.2015.12.026
- Lykaki, M., Pachatouridou, E., Carabineiro, S. A., Iliopoulou, E., Andriopoulou, C., Kallithrakas-Kontos, N., Boghosian, S., and Konsolakis, M., "Ceria Nanoparticles Shape Effects on the Structural Defects and Surface Chemistry: Implications in CO Oxidation by Cu/CeO2 Catalysts," Appl. Catal. B: Environ., 230, 18-28 (2018). https://doi.org/10.1016/j.apcatb.2018.02.035