References
- Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion. Information Processing & Management, 56(4), 1245-1259. https://doi.org/10.1016/j.ipm.2019.02.018
- Al-Shamri, M. Y. H. (2016). User profiling approaches for demographic recommender systems. Knowledge-based systems, 100, 175-187. https://doi.org/10.1016/j.knosys.2016.03.006
- Asani, E., Vahdat-Nejad, H., & Sadri, J. (2021). Restaurant recommender system based on sentiment analysis. Machine Learning with Applications, 6, 100114.
- Bobadilla, J., Ortega, F., Hernando, A., & Gutierrez, A. (2013). Recommender systems survey. Knowledge-based systems, 46, 109-132. https://doi.org/10.1016/j.knosys.2013.03.012
- Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
- Chen, H., Li, Z., & Hu, W. (2016). An improved collaborative recommendation algorithm based on optimized user similarity. The Journal of Supercomputing, 72, 2565-2578. https://doi.org/10.1007/s11227-015-1518-5
- Chen, S., & Peng, Y. (2018). Matrix factorization for recommendation with explicit and implicit feedback. Knowledge-based systems, 158, 109-117. https://doi.org/10.1016/j.knosys.2018.05.040
- Chhipa, S., Berwal, V., Hirapure, T., & Banerjee, S. (2022). Recipe Recommendation System Using TF-IDF. ITM Web of Conferences,
- Das, A. S., Datar, M., Garg, A., & Rajaram, S. (2007). Google news personalization: scalable online collaborative filtering. Proceedings of the 16th international conference on World Wide Web,
- Esmaeili, L., Mardani, S., Golpayegani, S. A. H., & Madar, Z. Z. (2020). A novel tourism recommender system in the context of social commerce. Expert Systems with Applications, 149, 113301.
- Gao, M., Wu, Z., & Jiang, F. (2011). Userrank for item-based collaborative filtering recommendation. Information Processing Letters, 111(9), 440-446. https://doi.org/10.1016/j.ipl.2011.02.003
- Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 249-256.
- Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70. https://doi.org/10.1145/138859.138867
- Hassan, A., & Mahmood, A. (2018). Convolutional recurrent deep learning model for sentence classification. IEEE Access, 6, 13949-13957. https://doi.org/10.1109/ACCESS.2018.2814818
- Hazrati, N., & Ricci, F. (2022). Recommender systems effect on the evolution of users' choices distribution. Information Processing & Management, 59(1), 102766.
- He, X., & Chua, T. S. (2017). Neural factorization machines for sparse predictive analytics. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, 355-364.
- He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web, 173-182.
- Hegde, S. B., Satyappanavar, S., & Setty, S. (2018). Sentiment based food classification for restaurant business. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1455-1462.
- Hlee, S., Lee, J., Yang, S. B., & Koo, C. (2019). The moderating effect of restaurant type on hedonic versus utilitarian review evaluations. International Journal of Hospitality Management, 77, 195-206. https://doi.org/10.1016/j.ijhm.2018.06.030
- Horng, J. S., & Hsu, H. (2020). A holistic aesthetic experience model: Creating a harmonious dining environment to increase customers' perceived pleasure. Journal of Hospitality and Tourism Management, 45, 520-534. https://doi.org/10.1016/j.jhtm.2020.10.006
- Idrissi, N., & Zellou, A. (2020). A systematic literature review of sparsity issues in recommender systems. Social Network Analysis and Mining, 10(1), 1-23. https://doi.org/10.1007/s13278-019-0612-8
- Jain, A., Nagar, S., Singh, P. K., & Dhar, J. (2020). EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems. Expert Systems with Applications, 161, 113724.
- Jin, B., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Multi-behavior recommendation with graph convolutional networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 659-668.
- Kim, D., Park, C., Oh, J., Lee, S., & Yu, H. (2016). Convolutional matrix factorization for document context-aware recommendation. In Proceedings of the 10th ACM conference on recommender systems, 233-240.
- Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.
- Koohi, H., & Kiani, K. (2016). User based collaborative filtering using fuzzy C-means. Measurement, 91, 134-139. https://doi.org/10.1016/j.measurement.2016.05.058
- Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37. https://doi.org/10.1109/MC.2009.263
- Lee, M., Jeong, M., & Lee, J. (2017). Roles of negative emotions in customers' perceived helpfulness of hotel reviews on a user-generated review website: A text mining approach. International Journal of Contemporary Hospitality Management, 29(2), 762-783. https://doi.org/10.1108/IJCHM-10-2015-0626
- Li, Q., Li, X., Lee, B., & Kim, J. (2021). A Hybrid CNN-Based Review Helpfulness Filtering Model for Improving E-Commerce Recommendation Service. Applied Sciences, 11(18), 8613. https://www.mdpi.com/2076-3417/11/18/8613
- Li, X., Wang, M., & Liang, T.-P. (2014). A multitheoretical kernel-based approach to social network-based recommendation. Decision Support Systems, 65, 95-104.
- Lima, G. R., Mello, C. E., Lyra, A., & Zimbrao, G. (2020). Applying landmarks to enhance memory-based collaborative filtering. Information Sciences, 513, 412-428. https://doi.org/10.1016/j.ins.2019.10.041
- Loureiro, S. M. C., Almeida, M., & Rita, P. (2013). The effect of atmospheric cues and involvement on pleasure and relaxation: The spa hotel context. International Journal of Hospitality Management, 35, 35-43. https://doi.org/10.1016/j.ijhm.2013.04.011
- Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: a survey. Decision Support Systems, 74, 12-32. https://doi.org/10.1016/j.dss.2015.03.008
- Mahadi, M., Zainuddin, N., Shah, N., Naziron, N. A., & Rum, S. (2018). E-halal restaurant recommender system using collaborative filtering algorithm. Journal of Advanced Research in Computing and Applications, 12(1), 22-34.
- Miao, X., Gao, Y., Chen, G., Cui, H., Guo, C., & Pan, W. (2016). SI2P: A restaurant recommendation system using preference queries over incomplete information. Proceedings of the VLDB Endowment, 9(13), 1509-1512. https://doi.org/10.14778/3007263.3007296
- Nemade, G., Deshmane, R., Thakare, P., Patil, M., & Thombre, V. (2017). Smart tourism recommender system. International Research Journal of Engineering and Technology (IRJET), 4(11), 601-603.
- Nilashi, M., Ibrahim, O., & Bagherifard, K. (2018). A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Systems with Applications, 92, 507-520. https://doi.org/10.1016/j.eswa.2017.09.058
- Onan, A. (2021). Sentiment analysis on product reviews based on weighted word embeddings and deep neural networks. Concurrency and Computation: Practice and Experience, 33(23), e5909.
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work, 175-186.
- Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128.
- Salehan, M., & Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40. https://doi.org/10.1016/j.dss.2015.10.006
- Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, 285-295.
- Saumya, S., Singh, J. P., & Dwivedi, Y. K. (2020). Predicting the helpfulness score of online reviews using convolutional neural network. Soft Computing, 24(15), 10989-11005. https://doi.org/10.1007/s00500-019-03851-5
- Singh, M. (2020). Scalability and sparsity issues in recommender datasets: a survey. Knowledge and Information Systems, 62(1), 1-43. https://doi.org/10.1007/s10115-018-1254-2
- Unger, M., Tuzhilin, A., & Livne, A. (2020). Context-aware recommendations based on deep learning frameworks. ACM Transactions on Management Information Systems (TMIS), 11(2), 1-15. https://doi.org/10.1145/3386243
- Xue, H. J., Dai, X., Zhang, J., Huang, S., & Chen, J. (2017). Deep matrix factorization models for recommender systems. In IJCAI, 17, 3203-3209. https://doi.org/10.24963/ijcai.2017/447
- Yang, S., Yao, J., & Qazi, A. (2020). Does the review deserve more helpfulness when its title resembles the content? Locating helpful reviews by text mining. Information Processing & Management, 57(2), 102179.
- Yoo, S., Song, J., & Jeong, O. (2018). Social media contents based sentiment analysis and prediction system. Expert Systems with Applications, 105, 102-111. https://doi.org/10.1016/j.eswa.2018.03.055
- Yu, B., Zhou, J., Zhang, Y., & Cao, Y. (2017). Identifying restaurant features via sentiment analysis on yelp reviews. arXiv preprint arXiv:1709.08698.
- Yu, K., Schwaighofer, A., Tresp, V., Xu, X., & Kriegel, H.-P. (2004). Probabilistic memory-based collaborative filtering. IEEE Transactions on Knowledge and Data Engineering, 16(1), 56-69. https://doi.org/10.1109/TKDE.2004.1264822
- Yue, W., Wang, Z., Liu, W., Tian, B., Lauria, S., & Liu, X. (2021). An optimally weighted user-and item-based collaborative filtering approach to predicting baseline data for Friedreich's Ataxia patients. Neurocomputing, 419, 287-294. https://doi.org/10.1016/j.neucom.2020.08.031
- Zhang, H., Ganchev, I., Nikolov, N. S., Ji, Z., & O'Droma, M. (2021). FeatureMF: an item feature enriched matrix factorization model for item recommendation. IEEE Access, 9, 65266-65276. https://doi.org/10.1109/ACCESS.2021.3074365