DOI QR코드

DOI QR Code

Diagnosing Reading Disorders based on Eye Movements during Natural Reading

  • Yongseok Yoo (School of Computer Science and Engineering, Soongsil University)
  • Received : 2023.05.18
  • Accepted : 2023.09.09
  • Published : 2023.12.31

Abstract

Diagnosing reading disorders involves complex procedures to evaluate complex cognitive processes. For an accurate diagnosis, a series of tests and evaluations by human experts are required. In this study, we propose a quantitative tool to diagnose reading disorders based on natural reading behaviors using minimal human input. The eye movements of the third- and fourth-grade students were recorded while they read a text at their own pace. Seven machine learning models were used to evaluate the gaze patterns of the words in the presented text and classify the students as normal or having a reading disorder. The accuracy of the machine learning-based diagnosis was measured using the diagnosis by human experts as the ground truth. The highest accuracy of 0.8 was achieved by the support vector machine and random forest classifiers. This result demonstrated that machine learning-based automated diagnosis could substitute for the traditional diagnosis of reading disorders and enable large-scale screening for students at an early age.

Keywords

References

  1. M. J. Snowling and C. Hulme, The Science of Reading: A Handbook, Oxford, UK: Blackwell Publishing, 2005.
  2. T. Shanahan and C. Shanahan, "Teaching disciplinary literacy to adolescents: Rethinking content-area literacy," Harvard Educational Review, vol. 78, no. 1, pp. 40-59, Apr. 2008. DOI: 10.17763/haer.78.1.v62444321p602101.
  3. National Center for Education Statistics, National assessment of educational progress (NAEP) 2019 reading assessments, 2019, [online] Available: https://nces.ed.gov/nationsreportcard/reading/.
  4. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed., Washington, DC: American Psychiatric Publishing, 2013.
  5. C. Hulme and M. J. Snowling, Developmental disorders of language learning and cognition. John Wiley & Sons, 2013.
  6. M. Traxler and M. A. Gernsbacher, Handbook of psycholinguistics, Burlington, MA: Elsevier, 2011.
  7. B. T. Carter and S. G. Luke, "Best practices in eye tracking research," International Journal of Psychophysiology, vol. 155, pp. 49-62, Sep. 2020. DOI: 10.1016/j.ijpsycho.2020.05.010.
  8. K. Rayner, "Eye movements in reading and information processing: 20 years of research," Psychological Bulletin, vol. 124, no. 3, pp. 372-422, 1998. DOI: 10.1037/0033-2909.124.3.372.
  9. K. Rayner, K. H. Chace, T. J. Slattery, and J. Ashby, "Eye movements as reflections of comprehension processes in reading," Scientific Studies of Reading, vol. 10 no. 3, pp. 241-255, Jul. 2006. DOI: 10.1207/s1532799xssr1003_3.
  10. B. J. Juhasz and K. Rayner, "Investigating the effects of a set of intercorrelated variables on eye fixation durations in reading," Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 29, no. 6, pp. 1312-1318, 2003. DOI: 10.1037/0278-7393.29.6.1312.
  11. S. Nahatame, "Text readability and processing effort in second language reading: A computational and eye-tracking investigation," Language Learning, vol. 71, no. 4, pp. 1004-1043, Jul. 2021. DOI: 10.1111/lang.12455.
  12. D. Torres, W. R. Sena, H. A. Carmona, A. A. Moreira, H. A. Makse, and J. S. Andrade Jr., "Eye-tracking as a proxy for coherence and complexity of texts," PLOS One, vol. 16, no. 12, p. e0260236, Dec. 2021. DOI: 10.1371/journal.pone.0260236.
  13. M. Mak, M. Faber, and R. M. Willems, "Different kinds of simulation during literary reading: Insights from a combined fMRI and eye-tracking study," Cortex, vol. 162, pp. 115-135, May 2023. DOI: 10.1016/j.cortex.2023.01.014.
  14. E. De Simone, K. Moll, L. Feldmann, X. Schmalz, and E. Beyersmann, "The role of syllables and morphemes in silent reading: An eye-tracking study," Quarterly Journal of Experimental Psychology, vol. 76, no. 11, pp. 2493-2513, Mar. 2023. DOI: 10.1177/17470218231160638.
  15. N. Valliappan, N. Dai, E. Steinberg, J. He, K. Rogers, V. Ramachandran, and V. Navalpakkam, "Accelerating eye movement research via accurate and affordable smartphone eye tracking," Nature Communications, vol. 11, no. 4553, pp. 1-12, Sep. 2020. DOI: 10.1038/s41467-020-18360-5.
  16. C. Mills, J. Gregg, R. Bixler, and S. K. D'Mello, "Eye-mind reader: An intelligent reading interface that promotes long-term comprehension by detecting and responding to mind wandering," Human-Computer Interaction, vol. 36, no. 4, pp. 306-332, Jan. 2021. DOI: 10.1080/07370024.2020.1716762.
  17. M. N. Benfatto, G. O. Seimyr, J. Ygge, T. Pansell, A. Rydberg, and C. Jacobson, "Screening for dyslexia using eye tracking during reading," PLOS One, vol. 11 no. 12, p. e0165508, Dec. 2016. DOI: 10.1371/journal.pone.0165508.
  18. B. Nerusil, J. Polec, J. Skunda, and J. Kacur, "Eye tracking based dyslexia detection using a holistic approach," Scientific Reports, vol. 11, no. 1, pp. 1-10, Aug. 2021. DOI: 10.1038/s41598-021-95275-1.
  19. A. Kim, U. Kim, M. Hwang, and H. Yoo, Test of reading achievement and reading cognitive processes ability (RA-RCP), Seoul: Hakjisa, 2014.
  20. Package eyekit, [Online] Available: https://jwcarr.github.io/eyekit/.
  21. D. R. Cox, "The regression analysis of binary sequences," Journal of the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2, pp. 215-232, Jul. 1958. DOI: 10.1111/j.2517-6161.1958.tb00292.x.
  22. R. A. Fisher, "The use of multiple measurements in taxonomic problems," Annals of Eugenics, vol. 7, no. 2, pp. 179-188, Sep. 1936. DOI: 10.1111/j.1469-1809.1936.tb02137.x.
  23. T. W. Anderson, An introduction to multivariate statistical analysis, 3rd ed., Hoboken, New Jersey: John Wiley & Sons, 2003.
  24. T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967. DOI: 10.1109/TIT.1967.1053964.
  25. P. Domingos and M. Pazzani, "On the optimality of the simple Bayesian classifier under zero-one loss," Machine Learning, vol. 29, pp. 103-130, Nov. 1997, [Online], Available: https://link.springer. com/article/10.1023/A:1007413511361.
  26. C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273-297, Sep. 1995. DOI: 10.1007/BF00994018.
  27. L. Breiman, "Random forest," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. DOI: 10.1023/A:1010933404324.
  28. T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning, 2nd ed., New York: Springer, 2009.